Math, asked by abiviji502, 1 year ago

if mcot A=n find value of msin A-ncos A/ncos A+msin A

Answers

Answered by polibiswas51878
13

Answer:

Step-by-step explanation:

Plz see the picture for the answer.

Plz mark it as brainliest plzzz if you like it plzzz

Attachments:
Answered by kunaljangid2k3
8

Answer:

Step-by-step explanation:

(m sinA - n cosA)/(n cosA + m sinA)

Dividing the numerator (top) and denominator (bottom) by sinA

= [(m sinA - n cosA)/sinA]/[(n cosA + m sinA)/sinA]

= (m sinA/sinA - n cosA/sinA)/(n cosA/sinA + m sinA/sinA)

= (m - ncotA)/(n cotA + m)

Since m cotA =n or cotA = n/m, substituting it in the above expression, we get

= (m - n* n/m)/(n*n/m + m)

= [m - n^2/m]/[n^2/m + m]

= [(m^2 - n^2)/m]/[(n^2 + m^2)/m]

= [(m^2 - n^2)/m] *[m/(n^2 + m^2)]

= (m^2 - n^2)/(n^2 + m^2)

Therefore,

(m sinA - n cosA)/(n cosA + m sinA) = (m^2 - n^2)/(m^2 + n^2)

I hoիe you mark me Brainliest

Similar questions