If mcotθ=n,then find the value of msinθ-ncosθ\mcosθ+nsinθ
Answers
Given that,
Now, Consider
can be rewritten as
We know,
So, using this identity, we get
Therefore,
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1
Answer:
Given that,
\red{\rm :\longmapsto\: mcot\theta = n}:⟼mcotθ=n
\bf\implies \:\boxed{ \tt{ \: cot \theta = \frac{n}{m} \: }}⟹
cotθ=
m
n
Now, Consider
\rm :\longmapsto\:\dfrac{msin \theta - ncos \theta}{mcos \theta + nsin \theta}:⟼
mcosθ+nsinθ
msinθ−ncosθ
can be rewritten as
\rm \: = \:\dfrac{sin \theta\bigg[m - \dfrac{ncos \theta}{sin \theta} \bigg]}{sin \theta\bigg[\dfrac{mcos \theta}{sin \theta} + n\bigg]}=
sinθ[
sinθ
mcosθ
+n]
sinθ[m−
sinθ
ncosθ
]
We know,
\boxed{ \tt{ \: cotx = \frac{cosx}{sinx} \: }}
cotx=
sinx
cosx
So, using this identity, we get
\rm \: = \:\dfrac{m - ncot \theta}{mcot \theta + n}=
mcotθ+n
m−ncotθ
\rm \: = \:\dfrac{m - n \times \dfrac{n}{m} }{m \times \dfrac{n}{m} + n}=
m×
m
n
+n
m−n×
m
n
\rm \: = \:\dfrac{ {m}^{2} - {n}^{2} }{ mn + mn }=
mn+mn
m
2
−n
2
\rm \: = \:\dfrac{ {m}^{2} - {n}^{2} }{2mn}=
2mn
m
2
−n
2
Therefore,
\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{msin \theta - ncos \theta}{mcos \theta + nsin \theta} =\dfrac{ {m}^{2} - {n}^{2} }{2mn} \: }}:⟼
mcosθ+nsinθ
msinθ−ncosθ
=
2mn
m
2
−n
2
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1