Math, asked by ANMOL8863, 2 months ago

If mean and variance of Binomial distribution are 4 and 2.4 respectively, then probability of success 'p' is equal to

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

  • Mean of Binomial Distribution = 4

  • Variance of Binomial Distribution = 2.4

Let assume that

  • n be the number of independent trials

  • p be the probability of success

  • q be the probability of failure

We know that

In Binomial Distribution,

 \red{\bf :\longmapsto\:Mean = np}

\rm :\implies\:np = 4 -  -  - (1)

And

 \purple{\bf:\longmapsto\:Variance = npq}

\rm :\implies\:npq = 2.4

\rm :\longmapsto\:4q = 2.4 \:  \:  \:  \:  \:  \:  \{ \: using \: (1) \:  \}

\rm :\longmapsto\:q = \dfrac{2.4}{6}

\rm :\longmapsto\:q = \dfrac{24}{60}

\bf\implies \:q = \dfrac{2}{5}  -  -  - (2)

We know that,

\bf :\longmapsto\:p + q = 1

\rm :\longmapsto\:p + \dfrac{2}{5}  = 1 \:  \:  \:  \:  \:  \{ \: using \: (2) \:  \}

\rm :\longmapsto\:p = 1 - \dfrac{2}{5}

\rm :\longmapsto\:p = \dfrac{5 - 2}{5}

\bf\implies \:p = \dfrac{3}{5}

Additional Information :-

The Binomial Distribution for random variable 'r' is given by

\green{\boxed{ \bf \: P(r) =  \: ^nC_r\: {p}^{r} {q}^{n - r} \:  \: where \: 0 \leqslant r \leqslant n}}

Similar questions