Math, asked by Anonymous, 5 months ago

if measures opposite angles of a parallelogram are(60-x)° and (3x-4)°, then find the values of X and Y.​(1 mark question)...

Answers

Answered by Aryan0123
29

Given:

Opposite angles of parallelogram are:

  • (60 - x)°
  • (3x - 4)°

To find:

  1. Values of x = ?

Method:

First let's understand the concept used.

Concept used:

Opposite angles af a parallelogram are equal.

(60 - x)° = (3x - 4)°

⇒ 60 - x = 3x - 4

⇒ 60 + 4 = 3x + x

⇒ 4x = 64

⇒ x = 64 ÷ 4

x = 16°

Now let's find the measure of each angles.

(60 - x)° = 60 - 16° = 44°

(3x - 4)° = 3(16) - 4 = 44°

∴ The 2 opposite angles of parallelogram are 44°

Answered by ADARSHBrainly
68

{\large{\pink{✯ \:  \: { \bf{\underline{\underline{ Given}} \:  \: ✯}}}}}

  • Measures opposite angles of a parallelogram are
  • (60-x)°
  • (3x-4)°

\large{\pink{✯ \:  \: { \bf{\underline{\underline{  To \:  \:  find }} \:  \: ✯}}}}

  • Value of X and Y means value of these given angles.

\Large{\red{꧁ \:  \: { \bf{\underline{\underline{  Solution }} \:  \: ꧂}}}}

So, here value of x is :-

{\large{\bf{\implies{(60-x)°  = (3x-4)°}}}}

{\large{\bf{\implies{60-x =  3x-4 }}}}

{\large{\bf{\implies{60 + 4 = 3x  + x}}}}

{\large{\bf{\implies{64 = 4x}}}}

{\large{\bf{\implies{4x = 64}}}}

 \\ {\large{\bf{\implies{x =  \frac{64}{4} }}}}

{\Large{\underline{\boxed{\blue{ \bf{\implies{x = 16}}}}}}}

So, angles are :-

》(60-x)° = 60 - 16 = 44°

》 (3x-4)° = 3×16 - 4 = 44°

Similar questions