If midpoints of the sides of ∆ABC are (1,2),(0,1)& (1,0), then find the coordinates of the vertices of ∆ABC.
(Class 10 Maths Sample Question Paper)
Answers
Answered by
10
SOLUTION:
Let P(1,2), Q(0,1) & R(1,0) be the coordinates of the mid points of AB, BC,CA of ∆ABC .Let the coordinates of the vertices of ∆ABC be A(x1,y1), B(x2,y2) and C(x3,y3).
P is the mid-point of AB.
(x1+x2)/2= 1 and (y1+ y2)/2= 2
x1+x2 = 2 ………(1)
y1+y2= 4…………(2)
Q(0,1) is the mid-point of BC.
(x2+x3)/2= 0 and (y2+ y3)/2= 1
x2+x3 = 0………….(3)
y2+ y3= 2………….(4)
R(1,0) is the mid-point of AC.
(x3+x1)/2= 1 and (y3+ y1)/2= 0
x3+x1= 2…………(5)
y3+ y1= 0…………(6)
On adding eqs 1,3,& 5
2(x1+x2+x3)= 4
x1+x2+x3 = 4/2
x1+x2+x3 = 2……………(7)
On adding eqs 2, 4 and 6
2(y1+y2 +y3)= 6
y1+y2 +y3= 3…………….(8)
Subtracting eq 1 from eq 7
x1+x2+x3 = 2
x1+x2 = 2
(-) (-) (-)
---------------
x3 = 0
Subtracting eq 3 from eq 7
x1+x2+x3 = 2
x2+x3 = 0
(-) (-) (-)
---------------
x1 = 2
Subtracting eq 5 from eq 7
x1+x2+x3 = 2
x1 +x3 = 2
(-) (-) (-)
---------------
x2 = 0
Subtracting eq 2 from eq 8
y1+y2 +y3= 3
y1+y2 = 4
(-) (-) (-)
--------------------
y3 = - 1
Subtracting eq 4 from eq 8
y1+y2 +y3= 3
y2+ y3= 2
(-) (-) (-)
--------------------
y1 = 1
Subtracting eq 6 from eq 8
y1+y2 +y3= 3
y1 + y3= 0
(-) (-) (-)
--------------------
y2 = 3
The value of x1 = 2, x2 = 0 and x3=0
The value of y1 = 1, y2 = 3 and y3= -1
Hence, the coordinates of the vertices of the ∆ABC are A(2,1), B(0,3), C(0,-1).
HOPE THIS WILL HELP YOU....
Let P(1,2), Q(0,1) & R(1,0) be the coordinates of the mid points of AB, BC,CA of ∆ABC .Let the coordinates of the vertices of ∆ABC be A(x1,y1), B(x2,y2) and C(x3,y3).
P is the mid-point of AB.
(x1+x2)/2= 1 and (y1+ y2)/2= 2
x1+x2 = 2 ………(1)
y1+y2= 4…………(2)
Q(0,1) is the mid-point of BC.
(x2+x3)/2= 0 and (y2+ y3)/2= 1
x2+x3 = 0………….(3)
y2+ y3= 2………….(4)
R(1,0) is the mid-point of AC.
(x3+x1)/2= 1 and (y3+ y1)/2= 0
x3+x1= 2…………(5)
y3+ y1= 0…………(6)
On adding eqs 1,3,& 5
2(x1+x2+x3)= 4
x1+x2+x3 = 4/2
x1+x2+x3 = 2……………(7)
On adding eqs 2, 4 and 6
2(y1+y2 +y3)= 6
y1+y2 +y3= 3…………….(8)
Subtracting eq 1 from eq 7
x1+x2+x3 = 2
x1+x2 = 2
(-) (-) (-)
---------------
x3 = 0
Subtracting eq 3 from eq 7
x1+x2+x3 = 2
x2+x3 = 0
(-) (-) (-)
---------------
x1 = 2
Subtracting eq 5 from eq 7
x1+x2+x3 = 2
x1 +x3 = 2
(-) (-) (-)
---------------
x2 = 0
Subtracting eq 2 from eq 8
y1+y2 +y3= 3
y1+y2 = 4
(-) (-) (-)
--------------------
y3 = - 1
Subtracting eq 4 from eq 8
y1+y2 +y3= 3
y2+ y3= 2
(-) (-) (-)
--------------------
y1 = 1
Subtracting eq 6 from eq 8
y1+y2 +y3= 3
y1 + y3= 0
(-) (-) (-)
--------------------
y2 = 3
The value of x1 = 2, x2 = 0 and x3=0
The value of y1 = 1, y2 = 3 and y3= -1
Hence, the coordinates of the vertices of the ∆ABC are A(2,1), B(0,3), C(0,-1).
HOPE THIS WILL HELP YOU....
Attachments:
Similar questions