Math, asked by vaishusathiya1254, 5 hours ago

If mm, nn and pp are the roots of the polynomial x^3+5x-8x
3
+5x−8 and sum of the roots is 00, then find the value of m^3+n^3+p^3.m
3
+n
3
+p
3
.

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{}

\mathsf{m,n\;and\;p\;are\;the\;roots\;of\;x^3+5x-8}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{m^3+n^3+p^3}

\underline{\textbf{Solution:}}

\mathsf{Consider,\;x^3+5x-8}

\mathsf{Sum\;of\;the\;roots=\dfrac{-(0)}{1}}

\implies\mathsf{m+n+p=0}

\mathsf{Product\;of\;the\;roots=\dfrac{-(-8)}{1}}

\implies\mathsf{mnp=8}

\textsf{We know that,}

\boxed{\mathsf{a+b+c=0\;\implies\;a^3+b^3+c^3=3\,abc}}

\implies\mathsf{m^3+n^3+p^3}

\mathsf{=3\;mnp}

\mathsf{=3(8)}

\mathsf{=24}

\implies\boxed{\mathsf{m^3+n^3+p^3=24}}

Answered by hukam0685
0

Step-by-step explanation:

Given : x³+5x-8

To find: If m, n and p are the roots of the polynomial and sum of the roots is 0, then find the value of m³+n³+p³.

Solution:

We know that there is a relation between zeros of polynomial with coefficient of polynomial.

On comparison with standard cubic polynomial ax³+bx²+cx+d

a=1

b=0

c=5

d=-8

ATQ

m, n and p are roots of polynomial,

Step 1: Write the relationship of zeros with coefficient of cubic polynomial.

\bold{m + n + p =  - \frac{b}{a}  = 0}...eq1 \\

and

\bold{mn + np + mp =  \frac{c}{a}  = 5 }...eq2\\

and

\bold{mnp =  \frac{ - d}{a}  = 8}...eq3 \\

Step 2: Take cube of eq1 both sides

( {m + n + p)}^{3}  =  {0}^{3}  \\

open the identity

\bold{\red{( {a + b)}^{3}  =  {a}^{3}  + 3 {a}^{2} b + 3a {b}^{2}  +  {b}^{3}}}\  \\

let (m+n) =a and p=b

 {(m + n)}^{3}  + 3 {(m + n)}^{2} p + 3(m + n) {p}^{2}  +  {p}^{3}  = 0 \\

again apply the same identity on (m+n)³ and (m+n)²

 {m}^{3}   + 3 {m}^{2}n + 3m {n}^{2}  +  {n}^{3}   + 3 {(m + n)}^{2} p + 3(m + n) {p}^{2}  +  {p}^{3}  = 0 \\

or

{m}^{3}   +  {n}^{3}  +  {p}^{3}  + 3  {m}^{2} n+ 3m {n}^{2}  + 3 ( {m}^{2}  + 2mn +  {n}^{2}) p + 3m {p}^{2}  +3 n {p}^{2} = 0 \\

or

{m}^{3}   +  {n}^{3}  +  {p}^{3}  + 3  {m}^{2} n+ 3m {n}^{2}   + 3 {m}^{2}p  + 6mnp +  3{n}^{2} p + 3m {p}^{2}  +3 n {p}^{2} = 0 \\

Add and subtract 3mnp and manipulate the terms so that value of eq2 can be used

{m}^{3}   +  {n}^{3}  +  {p}^{3}  + 3m(  {m} n  +  {m}p  + np )+ 3n(mp +  {n} p  +  3m {n})+3p( n {p}+m {p}+mn)-3mnp= 0 \\

put the value of eq2 and eq3

{m}^{3}   +  {n}^{3}  +  {p}^{3}  + 3m(5 )+ 3n(5)+3p(5)-3(8)= 0 \\

or

{m}^{3}   +  {n}^{3}  +  {p}^{3}  + 15m+ 15n+15p-24= 0 \\

{m}^{3}   +  {n}^{3}  +  {p}^{3}  + 15(m+ n+p)-24= 0 \\

put the value of eq1

{m}^{3}   +  {n}^{3}  +  {p}^{3}  + 15(0)-24= 0 \\

or

{m}^{3}   +  {n}^{3}  +  {p}^{3} =24 \\

Final answer:

\bold{\red{{m}^{3}   +  {n}^{3}  +  {p}^{3} =24} }\\

Hope it helps you.

Note*: Swipe screen to right to see full expression.

To learn more on brainly:

find a cubic polynomial whose zeros are 4 - 3 and -1

https://brainly.in/question/2610312

Find the exact values of p for which the equation

px^2+px-1

has real roots

https://brainly.in/question/46903977

Similar questions