Physics, asked by chanchalgaur9, 10 months ago

if mod a vector plus b vector = mod A vector minus b vector, show that a vector is perpendicular to b vector.

Please bhai log answer Karo. ​

Answers

Answered by shadowsabers03
9

We're given,

\longrightarrow\left|\vec{\sf{A}}+\vec{\sf{B}}\right|=\left|\vec{\sf{A}}-\vec{\sf{B}}\right|

If \sf{\theta} is the angle between \vec{\sf{A}} and \vec{\sf{B}},

\longrightarrow\sf{\sqrt{A^2+B^2+2AB\cos\theta}=\sqrt{A^2+B^2-2AB\cos\theta}}

Squaring both sides,

\longrightarrow\sf{A^2+B^2+2AB\cos\theta=A^2+B^2-2AB\cos\theta}

Cancelling like terms,

\longrightarrow\sf{2AB\cos\theta=-2AB\cos\theta}

Dividing both sides by \sf{2AB} since \sf{A,\ B\neq 0,}

\longrightarrow\sf{\cos\theta=-\cos\theta}

\longrightarrow\sf{\cos\theta+\cos\theta=0}

\longrightarrow\sf{2\cos\theta=0}

\longrightarrow\sf{\cos\theta=0}

This implies, since \sf{0^o\leq\theta\leq180^o,}

\longrightarrow\sf{\underline{\underline{\theta=90^o}}}

This implies the vectors \vec{\sf{A}} and \vec{\sf{B}} are perpendicular to each other.

Answered by jseducationrevolutio
2

Hlo, Guys

This is ur answer

Please check it

and mark me brainlist

thankyou

Attachments:
Similar questions