Physics, asked by StrongGirl, 8 months ago

If momentum P, area A nd time T are taken to be fundamental quantities. What is the dimensional formula of energy?

Answers

Answered by BrainlyTornado
29

ANSWER:

  • Dimensional formula of energy = [ P √A T⁻¹ ]

GIVEN:

  • Momentum P, area A and time T are taken to be fundamental quantities.

TO FIND:

  • Dimensional formula of energy.

EXPLANATION:

 \sf E \propto P^a \ A^b\ T^c

Here E is the Energy.

 \sf E = k \ P^a  \ A^b\ T^c

Here k is the constant of proportionality and has no unit and dimensions.

\sf[\ E\ ] = [\ P\ ]^a\ [\ A\ ]^b\ [\ T\ ]^c

\sf[\ E\ ] = [\ M \ L^2\ T^{-2}\ ]

\sf [\ P\ ]^a = [\ M \ L\ T^{-1}\ ]^a

\sf [\ P\ ]^a = [\ M^a  \ L^a \ T^{-a}\ ]

\sf [\ A\ ]^b =  [\ L^2\ ]^b

\sf [\ A\ ]^b =  [\ L^{2b}\ ]

\sf [\ T\ ]^c = [\ T\ ]^c

\sf [\ T\ ]^c = [\ T^c\ ]

\sf [\ M \ L^2\ T^{-2}\ ] = [\ M^a  \ L^a \ T^{-a}\ ]  [\ L^{2b}\ ] [\ T^c\ ]

Add the powers of equal bases.

\sf [\ M \ L^2\ T^{-2}\ ] = [\ M^a  \ L^{a + 2b} \ T^{-a + c}\ ]

Equate the powers of equal bases.

\sf [\ M \  ] = [\ M^a  \ ]

a = 1

\sf [\ L^2\  ] = [\ L^{a + 2b} \  ]

a + 2b = 2

Substitute a = 1

1 + 2b = 2

2b = 1

b = 1/2

\sf [\ T^{-2}\ ] = [ \ T^{-a + c}\ ]

- a + c = - 2

Substitute a = 1

- 1 + c = - 2

c = - 1

 \sf [ \ E \ ]= [\ P  \ {A}^{^1\!\!/\!_2}  \ T^{ - 1} ]

Dimensional formula of energy [ E ] = [ P √A T⁻¹ ]


MisterIncredible: Great !
Answered by rocky200216
27

\mathcal{\gray{\underbrace{\blue{GIVEN:-}}}}

⚡ If momentum P, area A and time T are taken to be fundamental quantities .

  • momentum = P

  • Area = A

  • Time = T

\mathcal{\gray{\underbrace{\blue{TO\:FIND:-}}}}

  • The dimensional formula of energy .

\mathcal{\gray{\underbrace{\blue{SOLUTION:-}}}}

We have know that,

\pink\bigstar\:\mathcal{\green{\boxed{\orange{Energy(E)\:=\:[M^1\:L^{2}\:T^{-2}]\:}}}}

\pink\bigstar\:\mathcal{\green{\boxed{\orange{Momentum(P)\:=\:[M^1\:L^{1}\:T^{-1}]\:}}}}

\pink\bigstar\:\mathcal{\green{\boxed{\orange{Area(A)\:=\:[M^0\:L^{2}\:T^{0}]\:}}}}

\pink\bigstar\:\mathcal{\green{\boxed{\orange{Time(T)\:=\:[M^0\:L^{0}\:T^{1}]\:}}}}

⚡ According to the question,

\rm{\green{Energy(E)\:\propto\:[P]^a\:[A]^b\:[T]^c\:}}

\rm{\green{Energy(E)\:=\:k\:[P]^a\:[A]^b\:[T]^c\:}}----(1)

  • k = Constant .

  • [k] = [M⁰ L⁰ T⁰]

\rm{\implies\:E\:=\:[M^0\:L^0\:T^0]\:[M^1\:L^1\:T^{-1}]^a\:[M^0\:L^2\:T^0]^b\:[M^0\:L^0\:T^1]^c\:}

\rm{\implies\:E\:=\:[M^{a}L^{a}T^{-a}]\:[L^{2b}]\:[T^{c}]\:}

\rm{\implies\:E\:=\:[M^{a}\:L^{a}\:L^{2b}\:T^{-a}\:T^{c}]\:}

\rm{\implies\:[M^1\:L^2\:T^{-2}]\:=\:[M^{a}\:L^{(a\:+\:2b)}\:T^{(-a\:+\:c)}]\:}

⚡ Now, comparing L.H.S and R.H.S of the above equation we get

✍️ a = 1

✍️ a + 2b = 2

=> 1 + 2b = 2

=> 2b = (2 - 1)

=> b = 1/2

✍️ -a + c = -2

=> -1 + c = -2

=> c = -2 + 1

=> c = -1

⚡ Putting the value of a, b and c in Equation (1), we get

\red\bigstar\:\rm{\pink{\boxed{\purple{\therefore\:[E]\:=\:[P]^1\:[A]^{1/2}\:[T]^{-1}\:}}}}


MisterIncredible: Awesome
Similar questions