Math, asked by gourianil18, 1 year ago

if mSin theta +n cos theta=p and mCos theta - n Sin theta = q, then prove that m^2+n^2=p^2+q^2

Answers

Answered by saurabhsemalti
12

(m \sin( \alpha )  + n \cos( \alpha ) ) = p \\ sq \: both \: sides \\  {m}^{2}  {sin}^{2} \alpha   +  {n}^{2}  {cos}^{2}  \alpha  + mnsin2  \alpha   \\ =  {p}^{2} .....(1) \\  \\  \\ also \\  \\ m \cos( \alpha )  - n \sin( \alpha )  = q \\ sq \: both \: sides \:  \\ m {}^{2}  {cos}^{2}  \alpha   +  {n}^{2}  {sin}^{2} \alpha  - mn \sin(2 \alpha )  \\  =  {q}^{2} .........(2) \\  \\ add(1) \: and \: (2) \\  \\  {m}^{2} ( {sin}^{2}  \alpha +  {cos}^{2}   \alpha ) +  {n}^{2} ( {sin}^{2}  \alpha  +  {cos}^{2}  \alpha ) \\  =  {p}^{2}  +  {q}^{2}  \\ m {}^{2}   +  {n}^{2} =  p {}^{2}  +  {q}^{2}

hence, proved...


MARK AS BRAINLIEST IF HELPED
Similar questions