Math, asked by satyambarnwal, 1 year ago

If MsinA+NcosA=P & McosA-NsinA=Q then find M^2+N^2+P^2+Q^2

Answers

Answered by BatteringRam
2

Answer:

\Rightarrow 2(P^2+Q^2)   is the required result.

Step-by-step explanation:

We have been given:

MsinA+NcosA=P     (1)

& McosA-NsinA=Q    (2)

We need to find M^2+N^2+P^2+Q^2

Squaring both sides in (1) and (2) and then adding them

After squaring both sides:

(MsinA+NcosA)^2=P^2

M^2 sin^2A+N^2 cos^2A+2MNcosAsinA=P^2     (3)

And M^2 cos^2A+N^2sin^2A-2MNcosAsinA=Q^2    (4)

Now, adding (3) and (4) we get:

M^2 sin^2A+N^2 cos^2A+2MNcosAsinA+M^2 cos^2A+N^2sin^2A-2MNcosAsinA=P^2+Q^2

After simplification:

M^2sin^2A+N^2cos^2A+M^2cos^2A+N^2sin^2A=P^2+Q^2

As we know: Sin^2x+cos^2x=1

M^2sin^2A+M^2cos^2A+N^2cos^2A+N^2sin^2A=P^2+Q^2

M^2(sin^2A+cos^2A)+N^2(sin^2A+cos^2A)=P^2+Q^2

M^2+N^2=P^2+Q^2

So, M^2+N^2+P^2+Q^2     (5)

Substitute M^2+N^2=P^2+Q^2   in (5) we get:

P^2+Q^2+P^2+Q^2

\Rightarrow 2(P^2+Q^2)   is the required result.

Similar questions