if mth times the mth term is an ap is equal to the n times nth term then show that (mtn)th terms of AP is zero
Answers
Answered by
12
Given m × tm = n × tn
⇒ m[a + (m – 1)d] = n[a + (n – 1)d]
⇒ ma + m(m – 1)d] = na + n(n – 1)d
⇒ ma + m(m – 1)d] – na – n(n – 1)d = 0
⇒ a(m – n) + [m2 – m – n2 + n]d = 0
⇒ a(m – n) + [m2 – n2 – m + n]d = 0
⇒ a(m – n) + [(m – n)(m + n) – (m – n)]d = 0
⇒ (m – n)[a+ {(m + n) – 1}]d = 0
⇒ [a+ {(m + n) – 1}]d = 0
Hence t(m + n) = 0
⇒ m[a + (m – 1)d] = n[a + (n – 1)d]
⇒ ma + m(m – 1)d] = na + n(n – 1)d
⇒ ma + m(m – 1)d] – na – n(n – 1)d = 0
⇒ a(m – n) + [m2 – m – n2 + n]d = 0
⇒ a(m – n) + [m2 – n2 – m + n]d = 0
⇒ a(m – n) + [(m – n)(m + n) – (m – n)]d = 0
⇒ (m – n)[a+ {(m + n) – 1}]d = 0
⇒ [a+ {(m + n) – 1}]d = 0
Hence t(m + n) = 0
Answered by
1
Given m × tm = n × tn
=m[a+(m-1)d]=n[a+(n-1)d]
=ma + m(m – 1)d] = na + n(n – 1)d
=ma + m(m – 1)d] -na - n(n – 1)d=0
= a(m – n) + [m2 – m – n2 + n]d = 0
=a(m – n) + [m2 – n2 – m + n]d = 0
= a(m – n) + [(m – n)(m + n) – (m – n)]d = 0
= (m – n)[a+ {(m + n) – 1}]d = 0
= [a+ {(m + n) – 1}]d = 0
hence t(m + n) = 0
hope it helps u!!
=m[a+(m-1)d]=n[a+(n-1)d]
=ma + m(m – 1)d] = na + n(n – 1)d
=ma + m(m – 1)d] -na - n(n – 1)d=0
= a(m – n) + [m2 – m – n2 + n]d = 0
=a(m – n) + [m2 – n2 – m + n]d = 0
= a(m – n) + [(m – n)(m + n) – (m – n)]d = 0
= (m – n)[a+ {(m + n) – 1}]d = 0
= [a+ {(m + n) – 1}]d = 0
hence t(m + n) = 0
hope it helps u!!
Similar questions