Math, asked by cvdeepak7, 4 days ago

if n+1=2010^2+2011^2, then root 2n+1 is​

Answers

Answered by user0888
14

\Huge\text{$\rightarrow4021$}

\large\text{\underline{\underline{Question}}}

If n+1=2010^{2}+2011^{2}, find the value of \sqrt{2n+1}.

\large\text{\underline{\underline{Topic}}}

Polynomial identity

An identity is an equation that is always true. It is known by the following equation.

\cdots\longrightarrow\boxed{\bold{(a+b)^{2}=a^{2}+2ab+b^{2}}}

\large\text{\underline{\underline{Explanation}}}

\large\text{[Polynomial idenity]}

From the following equation -

\text{$\cdots\longrightarrow n+1=2010^{2}+2011^{2}$}

we can find n by using a polynomial identity.

\text{$\cdots\longrightarrow n+1=2010^{2}+(2010+1)^{2}$}

\text{$\cdots\longrightarrow n+1=2010^{2}+(2010^{2}+2\cdot2010+1^{2})$}

On subtraction, -

\text{$\cdots\longrightarrow n=2\cdot2010^{2}+2\cdot2010$}

As we want \sqrt{2n+1}, for the next step we can multiply both sides by 2.

\text{$\cdots\longrightarrow 2n=4\cdot2010^{2}+4\cdot2010$}

Then we can add 1 on both sides.

\text{$\cdots\longrightarrow 2n+1=4\cdot2010^{2}+4\cdot2010+1$}

\text{$\cdots\longrightarrow 2n+1=2^{2}\cdot2010^{2}+2\cdot2\cdot2010+1^{2}$}

\large\text{[Polynomial idenity]}

Now, this is a perfect square. It is observed by a polynomial identity -

\cdots\longrightarrow\boxed{\bold{(a+b)^{2}=a^{2}+2ab+b^{2}}}

as known for the perfect square identity.

\text{$\cdots\longrightarrow 2n+1=(2\cdot2010+1)^{2}$}

Now, square root gives -

\text{$\cdots\longrightarrow\sqrt{2n+1}=4021$.}

\large\text{[Final answer]}

So, the required value is \boxed{4021}.

Answered by pradhanmadhumita2021
7

n + 1 =  {2010}^{2} +  {2011}^{2} \\ n + 1 =  {2010}^{2} +  {(2010 + 1)}^{2} \\  n + 1 =  {2010}^{2} +  {2010}^{2} + 2 \times 2010 + 1) \\ n =  {2010}^{2}  +  {2010}^{2}  + 2 \times 2010 \\ n = 2 \times  {2010}^{2} + 2 \times 2010  \\ 2n = 2(2 \times  {2010}^{2} + 2  \times 2010) \\  2n = 4 \times  {2010}^{2} + 4 \times 2010  \\ 2n + 1 = 4 \times  {2010}^{2}  + 4 \times 2010 + 1 \\ 2n + 1 = (2 \times  {2010}^{2}  + 2  \times 2 \times 2010 \times 1 \\ 2n + 1 = (2 \times 2010  { +1)}^{2}  \\  \sqrt{2n + 1}  =  \sqrt{(2 \times 2010 { + 1}^{2} )} \\  \sqrt{2n + 1}  = 2 \times 2010 + 1 \\  \sqrt{2n + 1} =  4020 + 1 = 4021 \\  \huge \mathfrak \gray { Thank\:You}

Similar questions