Math, asked by sanjai15102005, 21 days ago

If ^(n−1)P3 :

^n P4 = 1 : 10, find n.

Answers

Answered by TrustedAnswerer19
6

Answer:

Given,

 \:  \:  \:  \: ^ {(n - 1) }P_3: \: ^nP_4 = 1:10 \\   \sf \implies \:  \frac{^ {(n - 1) }P_3}{^nP_4}  =  \frac{1}{10}  \\   \sf \implies \:  \frac{ \frac{(n - 1)!}{(n - 1 - 3)! \: } }{ \frac{n!}{(n - 4)!} }  =  \frac{1}{10}  \\   \sf \implies \:  \frac{(n - 1)!}{ \cancel{(n - 4)!}}  \times  \frac{ \cancel{(n - 4)!}}{n!}  =  \frac{1}{10}  \\   \sf \implies \:  \frac{(n - 1)!}{n!}  =  \frac{1}{10}  \\   \sf \implies \:  \frac{ \cancel{(n - 1)!}}{n \cancel{(n - 1)!}}  =  \frac{1}{10}  \\   \sf \implies \:  \frac{1}{n}  =  \frac{1}{10}  \\  \therefore \: \:  \sf \:  n = 10

Note :

>  \:  \:  \: ^nP_r =  \frac{n!}{(n - r)!}  \:  \\  >  \:  n! = n(n - 1)(n - 2)...(n - r + 1).(n - r)! \\

Similar questions