Math, asked by sonali3301, 1 year ago

If n-1Cr = (k2-3) nCr +1 , Prove that k lies between root of 3 and 2 i.e (root of 3 , 2)

Answers

Answered by abhi178
31
your question is ---> ^{n-1}C_r=(k^2-3)^nC_{r+1}

use formula, ^AC_B=\frac{A!}{B!(A-B)!}

(n - 1)!/{r! × (n - 1 - r)!} = (k² - 3) × n!/(r + 1)!(n - r - 1)!

or, (n - 1)!/r! = (k² - 3) × n!/(r + 1)!

or, (n - 1)!/r! = (k² - 3) × n(n - 1)!/(r + 1)r!

or, 1/1 = (k² - 3) × n/(r + 1)

or, (r + 1)/n = (k² - 3)

we know, r and n are integers so, (r + 1)/n \in (0, 1]

so, 0 < (r + 1)/n ≤ 1

or, 0 < k² - 3 ≤ 1

or, 3 < k² ≤ 4

or, √3 < k ≤ 2 , -2 ≤ k < -√3

hence, k \in (√3, 2]
Answered by MaheswariS
10

Answer:


Step-by-step explanation:


(n-1){C_r}=(k^2-3).n{C_r+1}

\frac{(n-1)!}{r!(n-1-r)!}=(k^2-3)\frac{n!}{(r+1)!(n-r-1)!}

\frac{(n-1)!}{r!(n-1-r)!}=(k^2-3)\frac{n.(n-1)!}{r!(r+1)(n-r-1)!}

\frac{r+1}{n}=(k^2-3)

We\:have

r\leq\:(n-1)

r+1\leq\:n

\frac{r+1}{n}\leq1

k^2-3=\frac{r+1}{n}\leq1

k^2-3\leq1

k^2\leq4

-2\leq\:k\leq2........(1)

Also

0&lt; k^2 -3

=&gt; 3 &lt; k^2\\\\\sqrt{3}&lt;k...........(2)

From (1) &(2)

\sqrt{3}&lt;k\leq\:2

k\:belongs\:to\:(\sqrt(3), 2]




Similar questions