Math, asked by surajpuja2302, 9 months ago

If (n+2)!=20.n! Find the value of n

Answers

Answered by SparklingBoy
12

We can expand the factorial of a large number into a small number, as:-

n! =n(n-1)!

So,

here

given that

(n+2)! = 20.n!

(n+2)(n+1)n! = 20.n!

cancel out n ! from both side

(n+2) (n+1) = 20

so

 {n}^{2}  + 3n + 2 = 20 \\ \\   {n}^{2} + 3 n - 18 = 0  \\ \\  {n}^{2}  + 6n - 3n - 18 = 0  \\ \\ (n + 6)( n- 3) = 0 \\  \\  \implies \: n =  - 6 \:  \:  \:  \:  \: or \:  \:  \:  \:  \: n = 3 \\  \\ n \ne - ve \\  \\  \therefore \: n = 3

(n is not negative because factorial of a negative number is not defined .)

Answered by BrainlyIshu
8

given that

(n+2)! = 20.n!

(n+2)(n+1)n! = 20.n!

(n+2) (n+1) = 20

so

 {n}^{2}  + 3n + 2 = 20 \\ \\   {n}^{2} + 3 n - 18 = 0  \\ \\  {n}^{2}  + 6n - 3n - 18 = 0  \\ \\ (n + 6)( n- 3) = 0 \\  \\  \implies \: n =  - 6 \:  \:  \:  \:  \: or \:  \:  \:  \:  \: n = 3 \\  \\ n \ne - ve \\  \\  \therefore \: n = 3

mrk it as brainliest

Similar questions