Math, asked by saivardhan009, 1 year ago

If "n" = 2^3 × 3^4 × 5^4 × 7 then the number of consecutive zeros in "n", where "n" is a natural number, is​

Answers

Answered by rehanawaris916
5

Answer:

Step-by-step explanation:

n=2^3 * 3^4 * 5^3 * 5 *7      yaha pe 5 ki power ko torha hai

n=(2^3 * 5^3)* 3^4*5*7  yaha pe 2 and 5 ki power same hai unko aik bracket mein likh liya

n=(2*5)^3 *3^4 *5*7            yaha pe 2 and 5 ki power common li hai

n=3^4 *5*7 (10)^3

n= 3^4 * 5 *7 *1000

Thus, in the given natural number 'n' there are 3 zeros.

Similar questions