Math, asked by lavanyas, 1 year ago

if n=2^3x3^4x7x15^6, then find the number of consecutive zeros in natural number n

Answers

Answered by kvnmurty
181
n = 2³  *  3⁴  *  7  *  15⁶
   = 2³ * 3⁴ * 7 * 3⁶ * 5⁶

we get 0, when we multiply a 2 with a 5.

So there are three 2s, six 5s    and hence  we get 3 consecutive zeros in the value of n.


kvnmurty: click on thanks button above please
kvnmurty: select best answer pls
Answered by hotelcalifornia
47

Answer:

The number of consecutive zeroes in the given expression n will be three.

Solution:

To find the number of consecutive zeroes we need to separate out number of 2’s and 5’s possible in the calculation. This is because, equal number of 2’s and 5’s only lead to the formation of 10. Thus,  

Given that

\begin{aligned} \mathrm { n } & = 2 ^ { 3 } \times 3 ^ { 4 } \times 7 \times 15 ^ { 6 } \\\\ & = 2 ^ { 3 } \times 3 ^ { 4 } \times 7 \times ( 3 \times 5 ) ^ { 6 } \\\\ & = 2 ^ { 3 } \times 3 ^ { 4 } \times 7 \times 3 ^ { 6 } \times 5 ^ { 3 } \times 5 ^ { 3 } \\\\ & = \left( 2 ^ { 3 } \times 5 ^ { 3 } \right) \times 3 ^ { 10 } \times 5 ^ { 3 } \times 7 \\\\ & = 3 ^ { 10 } \times 5 ^ { 3 } \times 7 \times ( 10 ) ^ { 3 } \\\\ & = 3 ^ { 10 } \times 5 ^ { 3 } \times 7 \times 1000 \end{aligned}

There should be 3 consecutive zeros in the given expression n.

Similar questions