Math, asked by Gls, 1 year ago

if n!÷2! (n-2)! and n!÷4!(n-4)! are ratio 2:1 then find the value of n

Answers

Answered by laharidhupam002
8
n!/[2(n-2)!]:n!/[4(n-4)!]=2:1
[n!/2!(n-2)!].[n!/4!(n-4)!]=2/1
4.3.2!(n-4)!/[2!(n-2)(n-3)(n-4)!]=2/1
4.3/[(n-2)(n-3)]=2/1
(n-2)(n-3)=6
by solving we get n=0 or n=5
Answered by Anonymous
19

\huge\underline\mathfrak\blue{Question:-}

If \sf\dfrac{n!}{2!(n-2)!} and \sf\dfrac{n!}{4!(n-4)!}

are in the ratio 2:1, find the value of n.

\huge\underline\mathfrak\green{Answer:-}

We have,

 \sf \qquad \:  \frac{n!}{2!(n - 2)!} : \frac{n!}{4!(n - 4)!}  = 2:1 \\  \\  \implies \sf \:  \frac{n!}{2!(n - 2)!}  \times  \frac{4!(n - 4)!}{n!}  =  \frac{2}{1}  \\  \\  \implies \sf \:  \frac{4!(n - 4)!}{2!(n - 2) \times (n - 3) \times (n - 4)!}  =  \frac{2}{1}  \\  \\  \implies \sf \:  \frac{4 \times 3 \times 2!}{2!(n - 2)(n - 3)}  =  \frac{2}{1}  \\  \\  \implies \sf \:  (n - 2)(n - 3) = 6 \\  \\  \implies \sf \: (n - 2)(n - 3) = 3 \times 2 \\  \\  \implies \sf \: n - 2 = 3 \:  \:  \: and \:  \:  \: n - 3 = 2 \\  \\  \implies \sf \: n = 5

Therefore, value of n will be 5.

Similar questions