If N = 314 + 313 – 12, then what is the largest prime factor of N?
Answers
Given : N = 3¹⁴ + 3¹³ - 12
To Find : largest prime factor of N
सबसे बड़ा अभाज्य गुणनखण्ड
Solution:
N = 3¹⁴ + 3¹³ - 12
= 3¹³( 3 + 1) - 12
= 3¹³ (4) - 3( 4)
= 4 ( 3¹³ - 3)
= 4 . 3 ( 3¹² - 1)
= 4 . 3 ( (3⁶)² - 1²)
using a² - b² = (a + b)(a - b)
= 4 . 3 ( 3⁶ + 1)(3⁶ - 1)
= 4 . 3 ( 3⁶ + 1)(3³ + 1)(3³ - 1)
= 4 . 3 ( 3⁶ + 1)(28)(26)
= 4 . 3 (2.2.7)(2.13) ( 3⁶ + 1)
= 4 . 3 (2.2.7)(2.13) ( (3²)³ + 1³)
a³ + b³ = ( a + b)(a² +b² - ab)
= 4 . 3 (2.2.7)(2.13) ( 3² + 1)(3⁴ + 1 - 3²)
= 4 . 3 (2.2.7)(2.13) (10)(81 + 1 - 9)
= 4 . 3 (2.2.7)(2.13) (2.5)(73)
= 2.2 . 3 (2.2.7)(2.13) (2.5)(73)
= 2⁶.3..5.7.13.73
3¹⁴ + 3¹³ - 12 = 2⁶.3..5.7.13.73
largest prime factor = 73
सबसे बड़ा अभाज्य गुणनखण्ड = 73
Learn More:
Find the HCF: a. 49,91,112 b. 36,126,189 By prime factorization and ...
brainly.in/question/1230834
find the square root of 5625 by prime factorization method - Brainly.in
brainly.in/question/17680779