Math, asked by BholeSehgal, 1 year ago

If N = [{√(√5+2) + √(√5-2)}/√(√5+1)] - √(√5+1), then find the value of N.

Answers

Answered by Swarup1998
0

Rationalisation

Given, N=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}-\sqrt{\sqrt{5}-1}}

We rationalize the denominator of the right hand side of the given term by multiplying its conjugate irrational number \sqrt{\sqrt{5}+1}+\sqrt{\sqrt{5}-1}

N=\frac{(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})(\sqrt{\sqrt{5}+1}+\sqrt{\sqrt{5}-1})}{(\sqrt{\sqrt{5}+1}-\sqrt{\sqrt{5}-1})(\sqrt{\sqrt{5}+1}+\sqrt{\sqrt{5}-1}}

Now we calculate the denominator using algebraic identity a^{2}-b^{2}=(a+b)(a-b)

\quad N=\frac{\sqrt{(\sqrt{5}+2)(\sqrt{5}+1)}+\sqrt{(\sqrt{5}+2)(\sqrt{5}-1)}+\sqrt{(\sqrt{5}-2)(\sqrt{5}+1)}+\sqrt{(\sqrt{5}-2)(\sqrt{5}-1)}}{\sqrt{5}+1-\sqrt{5}+1}

\Rightarrow N=\frac{1}{2}\{\sqrt{7+3\sqrt{5}}+\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}+\sqrt{3-3\sqrt{5}}\}

This is the required value of N

Similar questions