Math, asked by adityahr3770, 1 day ago

If n(A)=20, n(B) = 15 n(AUB)= 25, Then find n(ANB)

Answers

Answered by suhail2070
1

Step-by-step explanation:

n(a) = 20 \:  \:  \:  \:  \:  \:  \:  \: n(b) = 15 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: n(a \:  \:  \: union \:  \: b) = 25 \\  \\ 25 = 20 + 15 - n(a \:  \:  \:  \: and \:  \:  \:  \:  \: b) \\  \\ therefore \:  \:  \:  \: n(a \:  \:  \:  \:  \: and \:  \:  \:  \:  \: b) = 35 - 25 \\  \\  = 10.

n(a intersection b) = 10.

Answered by SuspendedTrickster
2

Answer:

n(A)= 20

n(B)= 15

n(AUB)= 25

To find:

n(AnB)

Sol.

From formula:

n(a)+n(b)-n(aUb)=n(AnB)

>>20+15-25

>>35-15

>>20

Therefore n( AnB) is 20

Similar questions