Math, asked by junial9037, 7 hours ago

if n(a) =400 , n(b)= 200 , n(anb) = 50 . find n(aub )​

Answers

Answered by 2017027
1

Answer:

Ans. (c).n(A∩B)=n(A∪B)

=n(u)−n(A∪B)

=n(u)−{n(A)+n(B)−n(A∩B)}

=700−{200+300−100}=300

Answered by mathdude500
4

 \green{\large\underline{\sf{Given- }}}

\rm :\longmapsto\:n(A) = 400

\rm :\longmapsto\:n(B) = 200

\rm :\longmapsto\:n(A\cap B) = 50

 \purple{\large\underline{\sf{To\:Find - }}}

\rm :\longmapsto\:n(A\cup B)

 \pink{\begin{gathered}\large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}}

\boxed{\tt{ \:  n(A\cup B) = n(A) + n(B) - n(A\cap B) \: }}

 \red{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:n(A) = 400

\rm :\longmapsto\:n(B) = 200

\rm :\longmapsto\:n(A\cap B) = 50

So, using the formula

\rm :\longmapsto\:n(A\cup B) = n(A) + n(B) - n(A\cap B)

\rm :\longmapsto\:n(A\cup B) = 400 + 200 - 50

\rm :\longmapsto\:n(A\cup B) = 600 - 50

\rm\implies \: \:  \: \boxed{\tt{  \:  \: n(A\cup B) \:  \:  =  \:  \: 650 \:  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\tt{ n(A - B) = n(A) - n(A\cap B) \: }}

\boxed{\tt{ n(B - A) = n(B) - n(A\cap B) \: }}

\boxed{\tt{ n(A\cup B) = n(A - B) + n(A\cap B) + n(B - A)}}

De Morgan's Law

\boxed{\tt{  \: (A\cup B)' = A'\cap B' \: }}

\boxed{\tt{  \: (A\cap B)' = A'\cup B' \: }}

Similar questions