Math, asked by MrudulaSMohan535, 1 year ago

if n(A) =43,n(B)=51and n(A u B)=75, then n(A-B)u n(B-A)=

Answers

Answered by nain31
28

Given,

  • n(A) = 43
  • n(B) = 51
  • n(AUB) = 75

We know ,

 \large \boxed{n(A \cup B) = n(A) + n(B) - n(A  \cap  B) }

So,

 \mathsf{75 = 43 + 51 - n(A  \cap B) }

 \mathsf{75 = 94 - n(A \cap B) }

 \mathsf{n(A \cap B) = 94 - 75 }

 \mathsf{n(A \cap B) = 19 }

For n(A - B),

 \large \boxed{n(A-B) = n(A) -  n(A  \cap B) }

 \mathsf{n(A-B) = 43 -  19 }

 \mathsf{n(A-B) = 27 }

For n(B-A),

 \large \boxed{n(B-A) = n(B) -  n(A  \cap B) }

 \mathsf{n(A-B) = 51 -  19 }

 \mathsf{n(A-B) = 32 }


Anonymous: Awesome
Answered by Anonymous
10

note: cap means union in the below lines ...

GIVEN :

n(A) = 43

n(B) = 51

n(AUB) = 75

{n(A \cup B) = n(A) + n(B) - n(A  \cap  B) }

So,  

{75 = 43 + 51 - n(A  \cap B) }

75 = 94 - n(A \cap B) }

{n(A \cap B) = 94 - 75 }

{n(A \cap B) = 19 }

For n(A - B),

{n(A-B) = n(A) -  n(A  /cap B) }

{n(A-B) = 43 -  19 }

n(A-B) = 27 }

For n(B-A),

{n(B-A) = n(B) -  n(A  \cap B) }

{n(A-B) = 51 -  19 }

{n(A-B) = 32 }

Similar questions