Math, asked by upw59915, 7 days ago

if n(A) = 45, n (B) = 60 and n(AUB) = 100 then n(A intersection B) is​

Answers

Answered by Anonymous
24

 \rm \bigstar \underline{Note}

(A intersection B) is written as A∩B and symbol used to denote the intersection of sets A and B is ∩

\rm \bigstar \underline{Given \: that }

  • n(A) = 45n

  • n(B) = 60

  • n(AUB) = 100

\rm \bigstar \underline{To \: Find }

  • n(A∩B)

\rm \bigstar \underline{Formula \: used }

 \rm \mapsto \: n ( A \cup B ) = n (A) + n \: (B \: )  -  \:  n ( A \cap B )

\rm \bigstar \underline{Calculation}

  • Put the given values in this formula and solve

\rm \mapsto \:100= 45+60 \:   -  \:  n ( A \cap B )

\rm \mapsto \:100= 105 \:   -  \:  n ( A \cap B )

 \rm \implies \: n ( A \cap B ) = 105 - 100

 \rm \implies \: n ( A \cap B ) =  5

\rm \bigstar \underline{Therefore}

\bf\implies \: n ( A \cap B ) = \boxed{  5}

 \\ {\underline{\rule{300pt}{9pt}}}

\rm \bigstar \underline{Verfication}

\rm \mapsto \:100= 45+60 \:   -  \: ( 5)

\rm \mapsto \:100= 105 \:   - (5)

\rm \mapsto \:100= 100

\rm \mapsto  \: L.H.S = R.H.S

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by Anonymous
4

Answer:

\huge\red{Answer}

we have formula,

n(A∪ B)= n(U)− n(A∪ B)

n(A∪ B)= 60− 10= 50

Now,

n(A∪ B)= n(A)+ n(B)− n(A∩ B)

50= 35+ 24− n(A∩ B)

∴ n(A∩ B)= 9

Similar questions