Math, asked by AsmiG88581, 6 hours ago

if n (A) =8 , n (B) =14 , n (AuB) =18 , then find n (AnB) = ?

Answers

Answered by mathdude500
7

 \red{\large\underline{\sf{Given- }}}

\rm :\longmapsto\:n(A) = 8

\rm :\longmapsto\:n(B) = 14

\rm :\longmapsto\:n(A \:  \cup \: B) = 18

 \pink{\large\underline{\sf{To\:Find - }}}

\rm :\longmapsto\:n(A \:  \cap \: B)

 \green{\large\underline{\sf{Solution-}}}

Given that

\rm :\longmapsto\:n(A) = 8

\rm :\longmapsto\:n(B) = 14

\rm :\longmapsto\:n(A \:  \cup \: B) = 18

We know,

\rm :\longmapsto\:n(A \:  \cup \: B) = n(A) + n(B) - n(A \:  \cap \: B)

\rm :\longmapsto\:18 = 14 + 8 - n(A \:  \cap \: B)

\rm :\longmapsto\:18 = 22 - n(A \:  \cap \: B)

\rm :\longmapsto\:18  -  22 =  - n(A \:  \cap \: B)

\rm :\longmapsto\: - 4 =  - n(A \:  \cap \: B)

\rm :\longmapsto\: n(A \:  \cap \: B) = 4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

\red{\rm :\longmapsto\:n(A \cap \: B') = n(A) - n(A \:  \cap \: B) \: }

\red{\rm :\longmapsto\:n(B \cap \: A') = n(B) - n(A \:  \cap \: B) \: }

\red{\rm :\longmapsto\:n(B' \cap \: A') = n( \cup) - n(A \:  \cup \: B) \: }

\red{\rm :\longmapsto\:n(B' \cup \: A') = n( \cup) - n(A \:  \cap \: B) \: }

Similar questions