Math, asked by satishverma08, 8 months ago

If n(A-B) =15, n(B-A) =10 and n (A ∩ B) =5 , find n(A) and n(B) .​

Answers

Answered by MaheswariS
3

\textbf{Given:}

\mathsf{n(A-B)=15,\;n(B-A)=10,\;n(A\cap\,B)=5}

\textbf{To find:}

\mathsf{n(A)\;and\;n(B)}

\textbf{Solution:}

\textsf{We know that,}

\mathsf{n(A)=n(A-B)+n(A\cap\,B)}

\mathsf{n(A)=15+5}

\implies\boxed{\mathsf{n(A)=20}}

\mathsf{n(B)=n(B-A)+n(A\cap\,B)}

\mathsf{n(B)=10+5}

\implies\boxed{\mathsf{n(B)=15}}

\textbf{Find more:}

Let n(a-b)=25+x, n(b-a)=2x and n(a intersection b)=2x if n(a)=2(n(b)) then x is

https://brainly.in/question/4910939

Answered by mahek77777
11

\textbf{Given:}

\mathsf{n(A-B)=15,\;n(B-A)=10,\;n(A\cap\,B)=5}

\textbf{To find:}

\mathsf{n(A)\;and\;n(B)}

\textbf{Solution:}

\textsf{We know that,}

\mathsf{n(A)=n(A-B)+n(A\cap\,B)}

\mathsf{n(A)=15+5}

\implies\boxed{\mathsf{n(A)=20}}

\mathsf{n(B)=n(B-A)+n(A\cap\,B)}

\mathsf{n(B)=10+5}

\implies\boxed{\mathsf\red{n(B)=15}}

Similar questions