Math, asked by blossom17, 10 months ago

if n be any positive integer then by using Euclid's division algorithm show that n^2 can be expressed in the form 3m or 3m+1 ,where m is some integer​

Answers

Answered by Shailesh183816
10

\bf\large\underline\red{Explanation :-}

➤ let ' a' be any positive integer and b = 3.

we know, a = bq + r , 0 <  r< b.

now, a = 3q + r , 0<r < 3.

the possibilities of remainder = 0,1 or 2

Case I - a = 3q

a² = 9q² .

= 3 x ( 3q²)

= 3m (where m = 3q²)

Case II - a = 3q +1

a² = ( 3q +1 )²

=  9q² + 6q +1

= 3 (3q² +2q ) + 1

= 3m +1 (where m = 3q² + 2q )

Case III - a = 3q + 2

a² = (3q +2 )²

= 9q² + 12q + 4

= 9q² +12q + 3 + 1

= 3 (3q² + 4q + 1 ) + 1

= 3m + 1 ( where m = 3q² + 4q + 1)

From all the above cases it is clear that square of any positive integer ( as in this case a² ) is either of the form 3m or 3m +1.

❒________________________________

Answered by Anonymous
4

➤ let ' a' be any positive integer and b = 3.

we know, a = bq + r , 0 <  r< b.

now, a = 3q + r , 0<r < 3.

the possibilities of remainder = 0,1 or 2

Case I - a = 3q

a² = 9q² .

= 3 x ( 3q²)

= 3m (where m = 3q²)

Case II - a = 3q +1

a² = ( 3q +1 )²

=  9q² + 6q +1

= 3 (3q² +2q ) + 1

= 3m +1 (where m = 3q² + 2q )

Case III - a = 3q + 2

a² = (3q +2 )²

= 9q² + 12q + 4

= 9q² +12q + 3 + 1

= 3 (3q² + 4q + 1 ) + 1

= 3m + 1 ( where m = 3q² + 4q + 1)

From all the above cases it is clear that square of any positive integer ( as in this case a² ) is either of the form 3m or 3m +1.

Similar questions