Math, asked by Amishh2788, 10 months ago

If n c r-1 = 36, n c r =84 and n c r+1 = 126, find r c 2

Answers

Answered by laeeqhajeera12
0

Step-by-step explanation:

NSWER

\cfrac{^nC_{r}}{^nC_{r-1}}=\cfrac{84}{36}

n

C

r−1

n

C

r

=

36

84

\Rightarrow\cfrac{\cfrac{n!}{r!(n-r)!}}{\cfrac{n!}{(r-1)!(n-r+1)!}}=\cfrac{84}{36}⇒

(r−1)!(n−r+1)!

n!

r!(n−r)!

n!

=

36

84

\Rightarrow\cfrac{n-r+1}{r}=\cfrac{7}{3}⇒

r

n−r+1

=

3

7

\Rightarrow 3n-3r+3=7r⇒3n−3r+3=7r

\Rightarrow10r=3n+3⇒10r=3n+3---------------1

\cfrac{^nC_{r+1}}{^nC_{r}}=\cfrac{126}{84}

n

C

r

n

C

r+1

=

84

126

\Rightarrow\cfrac{\cfrac{n!}{(r+1)!(n-r-1)!}}{\cfrac{n!}{(r)!(n-r)!}}=\cfrac{3}{2}⇒

(r)!(n−r)!

n!

(r+1)!(n−r−1)!

n!

=

2

3

\Rightarrow \cfrac{n-r}{r+1}=\cfrac{3}{2}⇒

r+1

n−r

=

2

3

\Rightarrow 2n-2r=3r+3⇒2n−2r=3r+3

\Rightarrow 5r=2n-3⇒5r=2n−3-------------------2

Dividing Equation 1 by Equation 2,

\cfrac{10r}{5r}=\cfrac{3n+3}{2n-3}

5r

10r

=

2n−3

3n+3

\Rightarrow2(2n-3)=3n+3⇒2(2n−3)=3n+3

\Rightarrow4n-6=3n+3⇒4n−6=3n+3

\Rightarrow n=6+3⇒n=6+3

\Rightarrow n=9⇒n=9

10r=3n+310r=3n+3

\Rightarrow 3(9)+3=30⇒3(9)+3=30

\Rightarrow 10r=30⇒10r=30

\Rightarrow r=3⇒r=3

\therefore\, n=9,r=3∴n=9,r=3

Similar questions