Physics, asked by bk4857562, 1 day ago

If n equal resistances are first connected in series and then connected in parallel, the ratio of the maximum to the minimum resistance is ​

Answers

Answered by Ataraxia
4

Equivalent resistance in series (maximum) :-

:  \implies \tt R_{eq(s)} = R_{1} + R_{2}.... + R_{n}

 :  \implies \tt R_{eq(s)} = nR \:  \:  \:  \:  \:  \: ....(1)

Equivalent resistance in parallel (minimum) :-

:  \implies \tt  \dfrac{1}{R_{eq(p)} }=  \dfrac{1}{R_{1} }+  \dfrac{1}{R_{2}}.... +  \dfrac{1}{R_{n}}

 :  \implies \tt  \dfrac{1}{R_{eq(p)}} =  \dfrac{n}{R}

 :  \implies \tt R_{eq(p)} = \dfrac{R}{n}\:  \:  \:  \:  \:  \: ....(2)

Eq(1)/Eq(2)

 :  \implies \tt  \dfrac{R_{eq(s)}}{R_{eq(p)}}= \dfrac{nR}{ \dfrac{R}{n} }

:  \implies \tt  \dfrac{R_{eq(s)}}{R_{eq(p)}}=  {n}^{2}

Similar questions