Math, asked by mkqw1234, 1 month ago

if n > 2, then evaluate
 \begin{gathered}\displaystyle\sf\dfrac{\sum\limits_{r=2}^{n} (-2)^r \left| \begin{array}{ccc} \sf {}^{n-2} C_{r-2} &\sf {}^{n-2} C_{r-1} &\sf {}^{n-2} C_r \\\\\sf -3&\sf 1 &\sf 1\\\\\sf -3&\sf 1&\sf 1\\\\\sf 2&\sf -1&\sf 0 \end{array}\right| +(-1)^{n+1}}{2n-1}\end{gathered} \\

Answers

Answered by Vikramjeeth
6

AnSwEr:

\begin{gathered}\small\rm \Delta_{\sf r} \sf = \left| \begin{array}{ccc} \sf {}^{n-2} C_{r-2} &amp;\sf {}^{n-2} C_{r-1} &amp;\sf {}^{n-2} C_r \\\\\sf -3&amp;\sf 1 &amp;\sf 1\\\\\sf 2&amp;\sf -1&amp;\sf 0 \end{array}\right| \: , \: r=2,3,\dots ,n\end{gathered} </p><p> \\

Applying,

</u></strong></p><p><strong><u>[tex]\sf c_1 \to c_1+2c_2+c_3</u></strong></p><p><strong><u>[tex]\sf c_1 \to c_1+2c_2+c_3

\begin{gathered}\scriptsize\displaystyle\sf = \displaystyle\sf\sum\limits_{r=2}^{n} (-2)^r \: \left|\begin{array}{ccc} \sf {}^{n+2} C_{r-2} + {}^{n-1}C_{r-1} &amp;\sf {}^{n-2} C_{r-1} &amp;\sf {}^{n-2} C_r \\\\\sf 0&amp;\sf 0&amp;\sf 1\\\\\sf 0&amp;\sf -1&amp;\sf 0\end{array}\right|\end{gathered}

Applying,

\sf C_1\to C_1 +2C_2+C_3C

\begin{gathered}\footnotesize\displaystyle\sf = \sum_{r=2}^{n} (-2)^r \left| \begin{array}{ccc} \sf {}^{n-1}C_{r-1}+{}^{n-1}C_r &amp;\sf {}^{n-2}C_{r-1}&amp;\sf {}^{n-2} C_r \\\\\sf 0&amp;\sf 1&amp;\sf 1\\\\\sf 0&amp;\sf -1&amp;\sf 0 \end{array}\right|\end{gathered} </p><p>

\boxed{\sf = 2n-1+(-1)^n}

Similar questions