Math, asked by Anonymous, 3 months ago

if n > 2, then evaluate \displaystyle\sf\dfrac{\sum\limits_{r=2}^{n} (-2)^r \left| \begin{array}{ccc} \sf {}^{n-2} C_{r-2} &\sf {}^{n-2} C_{r-1} &\sf {}^{n-2} C_r \\\\\sf -3&\sf 1 &\sf 1\\\\\sf -3&\sf 1&\sf 1\\\\\sf 2&\sf -1&\sf 0 \end{array}\right| +(-1)^{n+1}}{2n-1}

Answers

Answered by Anonymous
149

correct Question:-

if n > 2, then evaluate

\footnotesize\displaystyle\sf\dfrac{\displaystyle\sf\sum\limits_{r=2}^{n} (-2)^r \left| \begin{array}{ccc} \sf {}^{n-2} C_{r-2} &\sf {}^{n-2} C_{r-1} &\sf {}^{n-2} C_r \\\\\sf -3&\sf 1&\sf 1\\\\\sf 2&\sf -1&\sf 0 \end{array}\right| +(-1)^{n+1}}{2n-1}

AnSwEr:-

\small\rm \Delta_{\sf r} \sf = \left| \begin{array}{ccc} \sf {}^{n-2} C_{r-2} &\sf {}^{n-2} C_{r-1} &\sf {}^{n-2} C_r \\\\\sf -3&\sf 1 &\sf 1\\\\\sf 2&\sf -1&\sf 0 \end{array}\right| \: , \: r=2,3,\dots ,n

applying \sf c_1 \to c_1+2c_2+c_3

\rm

\scriptsize\displaystyle\sf = \displaystyle\sf\sum\limits_{r=2}^{n} (-2)^r \: \left|\begin{array}{ccc} \sf {}^{n+2} C_{r-2} + {}^{n-1}C_{r-1} &\sf {}^{n-2} C_{r-1} &\sf {}^{n-2} C_r \\\\\sf 0&\sf 0&\sf 1\\\\\sf 0&\sf -1&\sf 0\end{array}\right|

\rm

applying \sf C_1\to C_1 +2C_2+C_3

\rm

\footnotesize\displaystyle\sf = \sum_{r=2}^{n} (-2)^r \left| \begin{array}{ccc} \sf {}^{n-1}C_{r-1}+{}^{n-1}C_r &\sf {}^{n-2}C_{r-1}&\sf {}^{n-2} C_r \\\\\sf 0&\sf 1&\sf 1\\\\\sf 0&\sf -1&\sf 0 \end{array}\right|

\boxed{\sf = 2n-1+(-1)^n}


Anonymous: Nice Answer!!
Anonymous: Thank u :)
Seafairy: great job :)♡
Anonymous: Thank u :)
Seafairy: your welcome:)♡
Anonymous: :)
Seafairy: (:
Similar questions