Math, asked by MichWorldCutiestGirl, 6 hours ago

If n is a natural number, which of the following is the solution to the equation tan(5α)=cot(3α)?

[A] α=1/8 (nπ+π/2) [B] α=nπ [C] α=2nπ [D] α=4nπ

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬


Answer with proper explanation.

Don't spam.


→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​

Answers

Answered by satbirsing9742987620
3

Step-by-step explanation:

Trigonometric Equations

We are given the trigonometric equation and we are supposed to solve it.

We will be using the following identities.

Let's proceed to solving the equation:

Now, when , it means that x lies on the Y-axis, as an odd integral multiple of

Hence, here we have:

Here, we have and the answer is Option [A].

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\:tan5 \alpha  = cot3 \alpha

can be rewritten as

\rm :\longmapsto\:\dfrac{sin5 \alpha }{cos5 \alpha }  = \dfrac{cos3 \alpha }{sin3 \alpha }

\rm :\longmapsto\:cos5 \alpha  \: cos3 \alpha  = sin5 \alpha  \: sin3 \alpha

\rm :\longmapsto\:cos5 \alpha  \: cos3 \alpha  -  sin5 \alpha  \: sin3 \alpha  = 0

We know,

\boxed{\tt{ cosx \: cosy \:  -  \: sinx \: siny \:  =  \: cos(x + y) \: }}

So, using this identity, we get

\rm :\longmapsto\:cos(5 \alpha  + 3 \alpha ) = 0

\rm\implies \:cos8 \alpha  = 0

We know,

\boxed{\tt{ cosx = 0 \: \rm\implies \:x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z}}

So, using this identity,

\rm\implies \:8 \alpha  = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: N

can be rewritten as

\rm\implies \:8 \alpha  = n\pi  + \dfrac{\pi}{2}\: \forall \: n \in \: N

\rm\implies \:\alpha  =\dfrac{1}{8} \bigg( n\pi  + \dfrac{\pi}{2}\bigg)\: \forall \: n \in \: N

So, Option [ A ] is correct.

ALTERNATIVE METHOD

Given Trigonometric equation is

\rm :\longmapsto\:tan5 \alpha  = cot3 \alpha

can be rewritten as

\rm :\longmapsto\:tan5 \alpha  = tan\bigg(\dfrac{\pi}{2}  - 3 \alpha\bigg)

\rm\implies \:5 \alpha  =n \pi + \dfrac{\pi}{2} - 3 \alpha  \:  \:  \:  \forall \: n \in \: N

\rm\implies \:8 \alpha  = n\pi  + \dfrac{\pi}{2}\: \forall \: n \in \: N

\rm\implies \:\alpha  =\dfrac{1}{8} \bigg( n\pi  + \dfrac{\pi}{2}\bigg)\: \forall \: n \in \: N

So, option [ A ] is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional information

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions