If n is an integer then, find the value of(2n-1)"mod 16
(a) 1
(b) 0
(c) 2
(d) 3
Answers
Answered by
1
Given : n is an integer
To Find : value of(2n-1)⁴ mod 16
(a) 1
(b) 0
(c) 2
(d) 3
Solution:
(2n-1)⁴ mod 16
(2n-1)⁴ = ⁴C₀(2n)⁴(-1)⁰ + ⁴C₁(2n)³(-1)¹ + ⁴C₂(2n)²(-1)² + ⁴C₃(2n)¹(-1)³ + ⁴C₄(2n)⁰(-1)⁴
= 16n⁴ + 4(8n³)(-1) + 6(4n²) + 4(2n)(-1) + 1
= 16n⁴ - 32n³ + 24n² - 8n + 1
= 16n⁴ - 32n³ + 16n² + 8n² - 8n + 1
= 16n²(n² - 2n + 1) + 8n(n - 1) + 1
= 16n²(n - 1)² + 8n(n - 1) + 1
n(n - 1) = 2k
= 16n²(n - 1)² + 8.2k + 1
= 16n²(n - 1)² +16k + 1
= 16(n²(n - 1)² + k) + 1
(2n-1)⁴ mod 16 = 1
the value of (2n-1)⁴ mod 16 = 1
Learn More:
find maximum and minimum values of f(x)=mod x+3 - Brainly.in
https://brainly.in/question/8211433
If x is congruent to 13 modulo 17 then 7x-3 is congruent to which ...
https://brainly.in/question/9897541
Similar questions