Math, asked by dhini64, 4 days ago

If n is any integer, positive negative integer then (cose+ isine )n=cosne+isinne​

Answers

Answered by Swarup1998
0

De Moivre's theorem

When n is an integer, positive or negative, and \theta is a real number

\quad (cos\theta+isin\theta)^{n}=cos\:n\theta+i\:sin\:n\theta;

when n is a fraction, positive or negative, and \theta is a real number

\quad cos\:n\theta+i\:sin\:n\theta is one of the values of (cos\theta+i\:sin\theta)^{n}.

Proof:

Case 1. Let n be a positive integer.

  • We prove this using Principle of Induction.

✱ When n=1,

\quad (cos\theta+i\:sin\theta)^{1}

=cos\theta+i\:sin\theta

=cos\:1\theta+i\:sin\:1\theta

So the given statement is true for n=1.

✱ Let the statement be true for n=m, where m is a positive integer.

Then (cos\theta+i\:sin\theta)^{k}=cos\:k\theta+i\:sin\:k\theta

✱ Now we check whether the statement is true for n=m+1.

Therefore (cos\theta+i\:sin\theta)^{m+1}

=(cos\theta+i\:sin\theta)^{m}(cos\theta+i\:sin\theta)^{1}

=(cos\:m\theta+i\:sin\:m\theta)(cos\theta+i\:sin\theta)

=(cos\:m\theta\:cos\theta-sin\:m\theta\:sin\theta)+i(cos\:m\theta\:sin\theta+sin\:m\theta\:cos\theta)

=cos\:(m+1)\theta+i\:sin\:(m+1)\theta

This shows that the statement holds for n=m+1 when the statement is true for n=m and n=1.

Thus by the principle of induction, the therorem holds for all the positive integers n.

Case 2. Let n be a negative integer.

Let n=-m, where m\in\mathbb{Z}^{+}

Now (cos\theta+i\:sin\theta)^{n}

=(cos\theta+i\:sin\theta)^{-m}

=\dfrac{1}{(cos\theta+i\:sin\theta)^{m}}

=\dfrac{1}{cos\:m\theta+i\:sin\:m\theta}

  • We have proved this in Case 1.

=\dfrac{(cos\:m\theta-i\:sin\:m\theta}{(cos\:m\theta+i\:sin\:m\theta)(cos\:m\theta-i\:sin\:m\theta)}

=\dfrac{cos\:m\theta-i\:sin\:m\theta}{cos^{2}m\theta+sin^{2}m\theta}

=cos\:m\theta-i\:sin\:m\theta

=cos\:(-n)\theta-i\:sin\:(-n)\theta

  • since n=-m\Rightarrow m=-n

=cos\:n\theta+i\:sin\:n\theta

This proves that

(cos\theta+i\:sin\theta)^{n}=cos\:n\theta+i\:sin\:n\theta

is true when n is an integer, positive or negative.

Similar questions