Math, asked by vaishanvibhaladhare, 4 months ago

If

n

is any positive integer, then the value of

4 1 4 1

2

 



n n i i

equals

(a) 1 (b) –1 (c)

i

(d) i​

Answers

Answered by ravindrabansod26
56

Question:-

⇒ If n is any positive integer , then the value of \frac{i^{4n+1} - i^{4n-1} }{2}equal ?

Answer:-

\frac{i^{4n+1} - i^{4n-1} }{2}

\frac{i^{4n} * i^1 - i^{4n} * i^{-1}}{2}

\frac{1* i - \frac{1}{i} }{2}

\frac{i^2 - 1}{2i}

as i^2 = -1

Therefore:-

\frac{-1-1}{2i}

\frac{-2}{2i}

\frac{-1}{i}

( now multiplying numerator and denomenater by "i" )

We get...

\frac{-1}{i} * \frac{i}{i}

\frac{-i}{i^2}

\frac{-i}{-1} ---- ( as i^2 = -1 )

i

# so our answer to this Question is :-

\frac{i^{4n+1} - i^{4n-1} }{2} = i

_-_-_-_-_--_-_-_-_-_-_-_-_-_

Thank you...........


ravindrabansod26: and follow
ravindrabansod26: me
ravindrabansod26: your ans is
ravindrabansod26: Question:-

⇒ If n is any positive integer , then the value of \frac{i^{4n+1} - i^{4n-1} }{2}2i4n+1−i4n−1​ equal ?
ravindrabansod26: Answer:-

⇒ \frac{i^{4n+1} - i^{4n-1} }{2}2i4n+1−i4n−1​
⇒ \frac{i^{4n} * i^1 - i^{4n} * i^{-1}}{2}2i4n∗i1−i4n∗i−1​
⇒ \frac{1* i - \frac{1}{i} }{2}21∗i−i1​​
⇒ \frac{i^2 - 1}{2i}2ii2−1​
as i^2 = -1
ravindrabansod26: Therefore:-
⇒ \frac{-1-1}{2i}2i−1−1​
⇒ \frac{-2}{2i}2i−2​
⇒ \frac{-1}{i}i−1​
( now multiplying numerator and denomenater by "i" )
ravindrabansod26: ( now multiplying numerator and denomenater by "i" )
We get...
⇒ \frac{-1}{i} * \frac{i}{i}i−1​∗ii​
⇒ \frac{-i}{i^2}i2−i​
⇒ \frac{-i}{-1} ---- ( as i^2 = -1 )−1−i​−−−−(asi2=−1)
⇒ ii
ravindrabansod26: # so our answer to this Question is :-
⇒ \frac{i^{4n+1} - i^{4n-1} }{2} = i2i4n+1−i4n−1​=i
ravindrabansod26: Thank you
ravindrabansod26: :)
Similar questions