Math, asked by madhav5245, 4 days ago

If n < 0 and f(x) = e^(nx) + e^(- nx) is monotonically decreasing. Find the interval to which x belongs.​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  {e}^{nx} + {e}^{ - nx}  \: where \: n &lt; 0

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f(x) = \dfrac{d}{dx} \bigg[{e}^{nx} + {e}^{ - nx}\bigg]

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {e}^{x} = {e}^{x} \: }}

So, using this, we get

\rm :\longmapsto\:f'(x) = {e}^{nx}(n) + {e}^{ - nx}( - n)

\rm :\longmapsto\:f'(x) = n{e}^{nx} - n {e}^{ - nx}

\rm :\longmapsto\:f'(x) = n\bigg[{e}^{nx} -  {e}^{ - nx}\bigg]

\rm :\longmapsto\:f'(x) = n\bigg[{e}^{nx} -  \dfrac{1}{{e}^{nx}} \bigg]

\rm :\longmapsto\:f'(x) = n\bigg[ \dfrac{{e}^{2nx} - 1}{{e}^{nx}} \bigg]

Now, It is given that f(x) is monotonically decreasing.

\rm \implies\:f'(x) &lt; 0

\rm :\longmapsto\: n\bigg[ \dfrac{{e}^{2nx} - 1}{{e}^{nx}} \bigg] &lt; 0

As n < 0 and exponential functions are always positive.

\rm \implies\:{e}^{2nx} - 1 &gt; 0

\rm \implies\:{e}^{2nx} &gt; 1

\rm \implies\:{e}^{2nx} &gt;  {e}^{0}

\rm \implies\:2nx &gt; 0

As n < 0

\rm \implies\:x &lt; 0

\bf \implies\:x \:  \in \: ( -  \infty , \: 0)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf 0 \\ \\ \sf sinx &amp; \sf cosx \\ \\ \sf cosx &amp; \sf  -  \: sinx \\ \\ \sf tanx &amp; \sf  {sec}^{2}x \\ \\ \sf cotx &amp; \sf  -  {cosec}^{2}x \\ \\ \sf secx &amp; \sf secx \: tanx\\ \\ \sf cosecx &amp; \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  &amp; \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx &amp; \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  &amp; \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions