Math, asked by rimesh57, 11 months ago

If n sin θ = m cos θ , then prove that
 \frac{m \: sin  \: \theta - n \: cos \:  \theta}{m \: sin \:  \theta \:  +  \: n \: cos \:  \theta} +  \frac{m \: sin \:  \theta \:  +  \: n \: cos \:  \theta}{m \: sin \:  \theta - n \: cos \:\theta} \\
 =  \frac{2(m {}^{4}  + n {}^{4} )}{m {}^{4}  - n {}^{4} }. \\

Answers

Answered by Anonymous
58

 \huge{\red{\boxed{ \overline{\underline{ \mid \tt{ \red{Your \:  Question. \red { \mid}}}}}}}}

 \rm \: If \: n \: sin \:  \theta = m \: cos \:  \theta \: then, \: prove \: that \:

 \sf{\frac{m \: sin \:  \theta - n \: cos \:  \theta}{m \: sin \:  \theta +  \: n \: cos \:  \theta} +  \frac{m \: sin \:  \theta +  n \: cos \:  \theta}{m \: sin \:  \theta \:  - n \: cos \:  \theta}} \\

 \sf =  \frac{2(m {}^{4}  + n {}^{4})}{m {}^{4}   - n {}^{4} }. \\

 \huge{\red{\boxed{\overline{\underline{ \mid \tt{ \red{Solution. \red{ \mid}}}}}}}}

 \bf \blue{G} \red{I} \purple{V} \green{E} \orange{N} \\

 \rm \: n \: sin \:  \theta = m \: cos \:  \theta

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \: sin \:  \theta =  \frac{m}{n} \: cos \:  \theta \\

 \:  \:  \:  \rm \: Putting \: this \: value \: of \: sin \:  \theta \: in \: LHS,

 \therefore \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \: LHS =  \frac{m \: sin \:  \theta - n \: cos \ \theta}{m \: sin \:  \theta + n \: cos \:  \theta} +  \frac{ m \: sin \:  \theta + n \: cos \:  \theta}{m \: sin \:  \theta \:  -  \: n \: cos \:  \theta} \\

 \rm =  \frac{m \bigg( \frac{m}{n} \: cos \:  \theta \bigg) -  \: n \: cos \:  \theta} {m \bigg( \frac{m}{n} \: cos \:  \theta \bigg) + \:  n \: cos \:  \theta} + \frac{m \bigg( \frac{m}{n} \:  \: cos \:  \theta \bigg) \:  - \: n \: cos \:  \theta }{m \bigg( \frac{m}{n} \: cos \: \theta \bigg) -  \: n \: cos \:  \theta} \\

 =  \:  \rm  \frac {cos \ \theta \bigg( \frac { m {}^{2} }  {n} - n \bigg) }{cos \:  \theta \bigg (\frac{m {}^{2} }{n  } + {n \bigg)}  } + \ \: \frac { cos \ \theta \bigg(\frac{m {}^{2} }  n {}^{}  + \: n \bigg) }{cos \ \theta \bigg(\frac{ m{}^{2} }{n }  -  {n \bigg)} }   \\

 =  \:  \:  \:  \rm \frac{ \frac{m {}^{2} }  {n} - n }{\frac{m {}^{2} }{n  } + {n}  } + \:   \frac{ \frac{m {}^{2} }  n {}^{}  + \: n }{\frac{m{}^{2} }{n }  -  {n} }   \\

 \rm   =  \:  \:  \:  \:  \:  \:  \:  \: \frac{ \frac{m {}^{2}  - n {}^{2} } {n} }{\frac{m  {}^{2} + n {}^{2} }{n}} +  \frac{ \frac{m {}^{2}  + n {}^{2} }{n} } {\frac{m {}^{2}  - n {}^{2} }{n}} \\

  =   \:  \:  \:  \:  \: \rm \frac{m {}^{2}  - n {}^{2} }{m {}^{2}  + n {}^{2} } +  \frac{m {}^{2} + n {}^{2}  }{m {}^{2}  - n {}^{2} } \\

  \:  \:  \:  \:  \:  \:  \:  \:  \: \rm \: Taking \: L.C.M.,

 \rm =  \frac{(m {}^{2}  - n {}^{2} ) {}^{2} + (m {}^{2}   + n {}^{2} ) {}^{2}}{(m {}^{2}  + n {}^{2})(m {}^{2} - n {}^{2})} \\

 \rm =   \: \frac{(m {}^{4}  + n {}^{4}  - 2m {}^{2} n {}^{2} ) + (m {}^{4}  + n {}^{4}  + 2m {}^{2} n {}^{2})}{m {}^{4}  - n {}^{4}} \\

 \rm =  \:  \:  \frac{ 2(m {}^{4}  + n {}^{4} )}{m {}^{4}  - n {}^{4}}  = RHS  \\

Answered by mukalmalhotra
0

Answer:

\huge{\red{\boxed{ \overline{\underline{ \mid \tt{ \red{Your \: Question. \red { \mid}}}}}}}}

∣YourQuestion.∣

\rm \: If \: n \: sin \: \theta = m \: cos \: \theta \: then, \: prove \: that \:Ifnsinθ=mcosθthen,provethat

\begin{lgathered}\sf{\frac{m \: sin \: \theta - n \: cos \: \theta}{m \: sin \: \theta + \: n \: cos \: \theta} + \frac{m \: sin \: \theta + n \: cos \: \theta}{m \: sin \: \theta \: - n \: cos \: \theta}} \\\end{lgathered}

msinθ+ncosθ

msinθ−ncosθ

+

msinθ−ncosθ

msinθ+ncosθ

\begin{lgathered}\sf = \frac{2(m {}^{4} + n {}^{4})}{m {}^{4} - n {}^{4} }. \\\end{lgathered}

=

m

4

−n

4

2(m

4

+n

4

)

.

\huge{\red{\boxed{\overline{\underline{ \mid \tt{ \red{Solution. \red{ \mid}}}}}}}}

∣Solution.∣

\begin{lgathered}\bf \blue{G} \red{I} \purple{V} \green{E} \orange{N} \\\end{lgathered}

GIVEN

\rm \: n \: sin \: \theta = m \: cos \: \thetansinθ=mcosθ

\begin{lgathered}\implies \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \rm \: sin \: \theta = \frac{m}{n} \: cos \: \theta \\\end{lgathered}

⟹sinθ=

n

m

cosθ

\: \: \: \rm \: Putting \: this \: value \: of \: sin \: \theta \: in \: LHS,PuttingthisvalueofsinθinLHS,

\begin{lgathered}\therefore \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \rm \: LHS = \frac{m \: sin \: \theta - n \: cos \ \theta}{m \: sin \: \theta + n \: cos \: \theta} + \frac{ m \: sin \: \theta + n \: cos \: \theta}{m \: sin \: \theta \: - \: n \: cos \: \theta} \\\end{lgathered}

∴LHS=

msinθ+ncosθ

msinθ−ncos θ

+

msinθ−ncosθ

msinθ+ncosθ

\begin{lgathered}\rm = \frac{m \bigg( \frac{m}{n} \: cos \: \theta \bigg) - \: n \: cos \: \theta} {m \bigg( \frac{m}{n} \: cos \: \theta \bigg) + \: n \: cos \: \theta} + \frac{m \bigg( \frac{m}{n} \: \: cos \: \theta \bigg) \: - \: n \: cos \: \theta }{m \bigg( \frac{m}{n} \: cos \: \theta \bigg) - \: n \: cos \: \theta} \\\end{lgathered}

=

m(

n

m

cosθ)+ncosθ

m(

n

m

cosθ)−ncosθ

+

m(

n

m

cosθ)−ncosθ

m(

n

m

cosθ)−ncosθ

\begin{lgathered}= \: \rm \frac {cos \ \theta \bigg( \frac { m {}^{2} } {n} - n \bigg) }{cos \: \theta \bigg (\frac{m {}^{2} }{n } + {n \bigg)} } + \ \: \frac { cos \ \theta \bigg(\frac{m {}^{2} } n {}^{} + \: n \bigg) }{cos \ \theta \bigg(\frac{ m{}^{2} }{n } - {n \bigg)} } \\\end{lgathered}

=

cosθ(

n

m

2

+n)

cos θ(

n

m

2

−n)

+

cos θ(

n

m

2

−n)

cos θ(

n

m

2

+n)

\begin{lgathered}= \: \: \: \rm \frac{ \frac{m {}^{2} } {n} - n }{\frac{m {}^{2} }{n } + {n} } + \: \frac{ \frac{m {}^{2} } n {}^{} + \: n }{\frac{m{}^{2} }{n } - {n} } \\\end{lgathered}

=

n

m

2

+n

n

m

2

−n

+

n

m

2

−n

n

m

2

+n

\begin{lgathered}\rm = \: \: \: \: \: \: \: \: \frac{ \frac{m {}^{2} - n {}^{2} } {n} }{\frac{m {}^{2} + n {}^{2} }{n}} + \frac{ \frac{m {}^{2} + n {}^{2} }{n} } {\frac{m {}^{2} - n {}^{2} }{n}} \\\end{lgathered}

=

n

m

2

+n

2

n

m

2

−n

2

+

n

m

2

−n

2

n

m

2

+n

2

\begin{lgathered}= \: \: \: \: \: \rm \frac{m {}^{2} - n {}^{2} }{m {}^{2} + n {}^{2} } + \frac{m {}^{2} + n {}^{2} }{m {}^{2} - n {}^{2} } \\\end{lgathered}

=

m

2

+n

2

m

2

−n

2

+

m

2

−n

2

m

2

+n

2

\: \: \: \: \: \: \: \: \: \rm \: Taking \: L.C.M.,TakingL.C.M.,

\begin{lgathered}\rm = \frac{(m {}^{2} - n {}^{2} ) {}^{2} + (m {}^{2} + n {}^{2} ) {}^{2}}{(m {}^{2} + n {}^{2})(m {}^{2} - n {}^{2})} \\\end{lgathered}

=

(m

2

+n

2

)(m

2

−n

2 )

(m

2

−n

2

)

2

+(m

2

+n

2

)

2

\begin{lgathered}\rm = \: \frac{(m {}^{4} + n {}^{4} - 2m {}^{2} n {}^{2} ) + (m {}^{4} + n {}^{4} + 2m {}^{2} n {}^{2})}{m {}^{4} - n {}^{4}} \\\end{lgathered}

=

m

4

−n

4

(m

4

+n

4

−2m

2

n

2

)+(m

4

+n

4

+2m

2

n

2

)

\begin{lgathered}\rm = \: \: \frac{ 2(m {}^{4} + n {}^{4} )}{m {}^{4} - n {}^{4}} = RHS \\\end{lgathered}

=

m

4

−n

4

2(m

4

+n

4

)

=RHS

Similar questions