Math, asked by saranya170204, 7 months ago

If n(U) = 50, n(A) = 38, n(B)=30 then the least value of n(A∩B) is​

Answers

Answered by abhisekh53080
10

hope u get ur answer......thq

Attachments:
Answered by akshay0222
4

Given,

\[\begin{array}{l}n\left( U \right) = 50\\n\left( A \right) = 38\\n\left( B \right) = 30\end{array}\]

Solution,

Know that \[n\left( {A \cup B} \right) \le n\left( U \right)\]. So,

\[ \Rightarrow n\left( {A \cup B} \right) \le 50\]

Therefore,

\[\begin{array}{l} \Rightarrow n\left( {A \cup B} \right) \le 50\\ \Rightarrow n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right) \le 50\end{array}\]

Apply values.

\[\begin{array}{l} \Rightarrow 38 + 30 - n\left( {A \cap B} \right) \le 50\\ \Rightarrow 68 - n\left( {A \cap B} \right) \le 50\\ \Rightarrow n\left( {A \cap B} \right) \ge 68 - 50\\ \Rightarrow n\left( {A \cap B} \right) \ge 18\end{array}\]

Hence, the least value of \[n\left( {A \cap B} \right)\] is \[18.\]

Similar questions