Math, asked by prachigupta00845, 2 months ago

If none of 2A, 3A and 5A are multiple of π, then Cot5ACot3A+ Cot5ACot2A- Cot3ACot2A=​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:2A, \: 3A, \: 5A \:  \cancel \in \: n\pi

Now,

\rm :\longmapsto\:5A = 3A + 2A

So,

\rm :\longmapsto\:cot5A =cot( 3A + 2A)

We know,

 \boxed{ \sf{ \: cot(x + y) =  \frac{cotxcoty -1}{coty + cotx}}}

So,

\rm :\longmapsto\:cot5A = \dfrac{cot3A \: cot2A - 1}{cot2A + cot3A}

\rm :\longmapsto\:cot5Acot2A + cot5Acot3A = cot3Acot2A - 1

Hence,

\rm :\longmapsto\:cot5Acot2A + cot5Acot3A -  cot3Acot2A =  - 1

Hence, Proved

Additional Information :-

 \boxed{ \sf \: sin(x + y) = sinx \: cosy \:   + \: siny \: cosx}

 \boxed{ \sf \: sin(x  -  y) = sinx \: cosy \:    -  \: siny \: cosx}

 \boxed{ \sf \: cos(x  -  y) = cosx \: cosy \: +  \: siny \: sinx}

 \boxed{ \sf \: cos(x +   y) = cosx \: cosy \:  -   \: siny \: sinx}

 \boxed{ \sf{ \: cot(x  -  y) =  \frac{cotxcoty  + 1}{coty  -  cotx}}}

 \boxed{ \sf{ \: tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany} }}

 \boxed{ \sf{ \: tan(x  -  y) =  \frac{tanx  -  tany}{1  +  tanx \: tany} }}

Answered by rssajikrishna
1

Answer:

sorry by mistake i clicked the unfriend option or smth

Step-by-step explanation:

pls accept again

Similar questions