Math, asked by rehanlakhani183, 10 months ago

if np3=720 find n. ​

Answers

Answered by rajsingh24
10

hey mate your answer is

@Raj Singh......

Attachments:
Answered by pulakmath007
2

The value of n = 10

Given :

\displaystyle \sf{ {}^{n}P_3 = 720 }

To find :

The value of n

Formula :

\displaystyle \sf{ {}^{n}P_r = \frac{n!}{(n - r)!} }

Solution :

Step 1 of 2 :

Write down the given equation

Here the given equation is

\displaystyle \sf{ {}^{n}P_3 = 720 }

Step 2 of 2 :

Find the value of n

\displaystyle \sf{ {}^{n}P_3 = 720 }

\displaystyle \sf{ \implies {}^{n}P_3 = 10 \times 9 \times 8  }

\displaystyle \sf{ \implies {}^{n}P_3 = \frac{10!}{7!} }

\displaystyle \sf{ \implies {}^{n}P_3 = \frac{10!}{(10 - 3)!} }

\displaystyle \sf{ \implies {}^{n}P_3 = {}^{10}P_3 } \: \: \bigg[ \: \because \:\displaystyle \sf{ {}^{n}P_r = \frac{n!}{(n - r)!} } \: \bigg]

\displaystyle \sf{ \implies n = 10}

Hence the required value of n = 10

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 7. 5pr = 7pr – 1, then find r.(question based on permutation and combination chapter)

https://brainly.in/question/26877723

2. If nPr = 3024 and nCr = 126 then find n and r.

https://brainly.in/question/29044585

Similar questions