Math, asked by geographyexam656, 6 months ago

If nPr = 3024 and nCr = 126 then find n and r.

Answers

Answered by pulakmath007
21

SOLUTION

GIVEN

 \displaystyle \sf{  {}^{n}P_{r} = 3024 \: }

 \displaystyle \sf{  {}^{n}C_{r} = 126 \: }

TO DETERMINE

The value of n and r

EVALUATION

Here it is given that

 \displaystyle \sf{  {}^{n}P_{r} = 3024 \: }

 \implies \displaystyle \sf{ \frac{n! }{(n - r)! }   = 3024\: } \:  \:  \: .....(1)

Again

 \displaystyle \sf{  {}^{n}C_{r} = 126 \: }

 \implies \displaystyle \sf{ \frac{n! }{r!(n - r)! }   = 126\: } \:  \:  \: .....(2)

Equation (1) ÷ Equation (2) gives

 \sf{r ! = 24}

 \implies \sf{r ! = 4 \times 3 \times 2 \times 1}

 \implies \sf{r ! = 4 !}

 \implies \sf{r = 4 \: }

From Equation (2) we get

 \displaystyle \sf{ \frac{n! }{4!(n - 4)! }   = 126\: } \:  \:  \:

 \implies \displaystyle \sf{ \frac{n(n - 1)(n - 2)(n - 3)}{4!}   = 9 \times 7 \times 2\: } \:  \:  \:

 \implies \displaystyle \sf{ {n(n - 1)(n - 2)(n - 3)} = {4!}  \times  9 \times 7 \times 2\: } \:  \:  \:

 \implies \displaystyle \sf{ {n(n - 1)(n - 2)(n - 3)} =   24 \times 9 \times 7 \times 2\: } \:  \:  \:

 \implies \sf{ n(n - 1)(n - 2)(n - 3) = 9 \times 8 \times 7 \times 6\: }

 \implies \sf{ n(n - 1)(n - 2)(n - 3) = 9 \times (9 - 1) \times (9 - 2) \times (9 - 3)\: }

Comparing both sides we get

 \sf{n = 9}

FINAL ANSWER

The required value of n and r 9 and 4 respectively

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. (32C0)^2-(32C1)^2+(32C2)^2-..........(32C32)^2=

https://brainly.in/question/28583245

2. The value of 20 sigma 50-r C6 is equal to

https://brainly.in/question/25207335

Similar questions