Math, asked by sunil198319kumar, 9 months ago

If nth term of an A.P is 2n then the sum of first n terms of the A.P is
a.n²
b.n(n + 1)
c.n(n + 2)
d.n2 + 2n​

Answers

Answered by Cynefin
30

 \huge{ \underline{ \bold{ \star{ \red{ \: Question....}}}}}

✳If nth term of an A.P is 2n then the sum of first n terms of the A.P is

a.n²

b.n(n + 1)

c.n(n + 2)

d.n2 + 2n

 \huge{ \underline{ \star{ \bold{ \red{ \: Answer...}}}}}

✒Option B n(n+1)

 \huge{ \underline{ \star{ \bold{ \red{ \: Solution...}}}}}

✳GIVEN...

✏The nth term of an AP = 2n

✳TO FIND...

✏Sum of n terms...?

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

 \large{ \sf{ \leadsto{ \color{blue}{u \: must \: know...}}}} \\   \\  \large{ \sf{ \star{ formula \: for \: \: nth \: term \: of \: ap...}}} \\  \huge{ \bold{ \boxed{ \sf{ \green{ \red{a}n = a + (n - 1)d}}}}} \\  \\  \large{ \sf{ \red{a}n = nth \: term \: of \: ap}} \\  \\  \large{ \sf{a = first \: term \: of \: ap}} \\  \\  \large{ \sf{n =  \: no. \: of \: terms}} \\  \\  \large{ \sf{ d = common \: difference}}

 \large{ \sf{ \leadsto{ \purple{ by \: using \: formula...}}}} \\  \\  \large{ \sf{ \implies{ \red{a}n = 2n}}} \\  \\  \large{ \sf{  \red{putting \: n = 1 \:  \: 2 \:  \: 3....}}}  \\  \\  \large{ \sf{ \implies{ \red{a}1 = 2}}} \\  \large{ \sf{first \: term = 2}} \\  \\  \large{ \sf{ \implies{ \red{a}2 = 4}}} \\  \large{ \sf{ \red{a}2 =  \red{a}1 + (2 - 1)d}} \\  \large{ \sf{ \implies{4 = 2 + d}}} \\  \large{ \sf{ common \: difference = 2}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

 \large{ \sf{ \leadsto{ \color{blue}{ u \: must \: know..}}}} \\   \\  \large{ \sf{ \star{formula \: for \: sum \: of \:  n \: terms}}} \\  \\  \huge{ \sf{ \boxed{ \green{ \red{s}n =  \frac{n}{2} 〖2a + (n - 1)d〗}}}} \\  \\  \large{ \sf{ \red{s}n = sum \: of \: n \: terms}}

 \large{ \sf{ \leadsto{ \color{blue}{ by \: using \: this \: formula...}}}} \\  \\  \large{ \sf{ \implies{ \red{s}n =  \frac{n}{2} 〖2 \times 2 + (n - 1)2〗}}} \\  \\  \large{ \sf{ \implies{ \red{s}n =  \frac{n}{2} 〖4  + 2n - 2〗}}} \\  \\  \large{ \sf{ \implies{ \red{s}n =  \frac{n}{ \cancel{2}}  \times \cancel{ 2}(1 + n)}}} \\  \\  \large{ \sf{ \implies{ \red{s}n =  {n}^{2}  + n}}} \\  \\  \large{ \sf{ \implies{ \purple{ \boxed{ \red{s}n = n(n + 1)}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

 \large{ \bold{ \green{ \underline{required \: answer \: is \: n(n + 1)}}}}

Similar questions