Math, asked by ZafarZayn12, 1 year ago

If O be the origin and the coordinates of A and B are (x1,y1) and (x2,y2)respectively then prove that OA*OB*cos(angleAOB)=x1*x2+y1*y2?​

Answers

Answered by rishu6845
9

Step-by-step explanation:

Let OA and OB makes angles θ₁ and θ₂ with x axis respectively and ∠AOB=α

Now OA=√{(x₁-0)²+(y₁-0)²}=√(x₁²+y₁²)

OB=√{(x₂-0)²+(y₂-0)²}=√(x₂²+y₂²)

Slope of OA=(y₁-0)/(x₁-0) =y₁/x₁

tanθ₁=y₁/x₁

Similarly, tanθ₂=y₂/x₂

Now, tanθ₁ -tanθ₂

tan(θ₁-θ₂)= --------------------------

1+tanθ₁ tanθ₂

(y₁/x₁) - (y₂/x₂)

= --------------------------

1 + (y₁/x₁)(y₂/x₂)

(y₁x₂-x₁y₂)/x₁x₂

= -------------------------

(x₁x₂+y₁y₂)/x₁x₂

(y₁x₂-x₁y₂)

tanα =---------------------

(x₁x₂+y₁y₂)

Νow squaring both sides

(y₁x₂-x₁y₂)²

tan²α = ---------------------

(x₁x₂+y₁y₂)²

(y₁x₂-x₁y₂)²

Sec²α - 1 =-----------------------

(x₁x₂+y₁y₂)²

(y₁x₂ -x₁y₂)²

Sec²α= ------------------- + 1

(x₁x₂+y₁y₂)²

(y₁x₂-x₁y₂)² +(x₁x₂+y₁y₂)²

=--------------------------------------

(x₁x₂ + y₁ y₂)²

y₁²x₂²+x₁²y₂²-2x₁x₂y₁y₂+x₁²x₂²+y₁²y₂²+2x₁x₂y₁

y₂

=--------------------------------------------------------------

(x₁x₂+y₁y₂)²

x₁²x₂²+x₁y₂²+y₁²x₂²+y₁²y₂²

=--------------------------------------------

(x₁x₂+y₁y₂)²

x₁²(x₂²+y₂²)+y₁²(x₂²+y₂²)

=-------------------------------------------

(x₁x₂ + y₁²y₂²)

(x₁²+y₁²)(x₂²+y₂²)

Sec²α = ------------------------------

(x₁x₂+y₁y₂)²

√(x₁²+y₁²) √(x₂²+y₂²)

Secα = --------------------------------

(x₁x₂+y₁y₂)

OA × OB

Secα= -------------------

(x₁x₂+y₁y₂)

(x₁x₂+y₁y₂)

Cosα= --------------------

OA ×OB

OA × OB Cos (∠AOB)= (x₁x₂+y₁y₂)

Attachments:
Answered by HappiestWriter012
6

Given, O is the origin, So O is ( 0, 0)

Co-ordinates : A is (x₁, y₁), B is (x₂, y₂)

In vector form,

OA = x₁ i + y₁ j

OB = x₂ i + y₂ j

Let's say OA, OB are represented by Vectors a, b.

⇒ So,

⇒a. b = ( x₁ i + y₁ j) (x₂ i + y₂ j)

⇒ a. b = x₁x₂ + y₁y₂ - - - - (1)

By definition of Dot product,

⇒ a. b = |a| |b| cos(a, b)

⇒a. b = OA × OB ×cos ( ∠AOB) - - - - (2)

Now, From (1) & (2)

OA × OB × cos ( ∠AOB) = x₁x₂ + y₁y₂

Hence proved

Similar questions