Math, asked by Aarokya, 1 day ago

If O is the center of the circle, find the value of x.​

Attachments:

Answers

Answered by sharu333
0

Answer:

i) ∠ACB=∠ADB      (Angles in the same segment of a circle)

But ∠ADB=x  

o

 

⇒∠ABC=x  

o

 

Now in ΔABC

∠CAB+∠ABC+∠ACB=180  

o

 

⇒40  

o

+90  

0

+x  

o

=180  

o

       (AC is the diameter)

⇒130  

o

+x  

o

=180  

o

 

⇒x  

o

=180  

0

−130  

o

=50  

o

 

(ii) ∠ACD=∠ABD      (angles in the same segment)

And, ∠ACD=x  

o

 

Now in triangle OAC,

OA=OC    (radii of the same circle)

⇒∠ACO=∠AOC       (opposite angles of equal sides)

Therefore, x  

o

=62  

o

 

(iii) ∠AOB+∠AOC+∠BOC=360  

o

     (sum of angles at a point)

⇒∠AOB+80  

o

+130  

o

=360  

o

 

⇒∠AOB+210  

o

=360  

o

 

⇒∠AOB=360  

o

−210  

o

=150  

0

 

Now arc AB subtends ∠AOB at the centre and  ∠ACB at the remaining part of the circle

∴∠AOB=2∠ACB

⇒∠ACB=  

2

1

∠AOB=  

2

1

×150  

o

=75  

o

 

(iv) ∠ACB+∠CBD=180  

o

 

⇒∠ABC+75  

o

=180  

o

 

⇒∠ABC=180  

o

−75  

o

=105  

o

 

Now arc AC subtends reflex ∠AOC at the centre and ∠ABC at the remaining part of the circle.

Reflex ∠AOC=2∠ABC

=2×105  

o

=210  

o

 

(v) ∠AOC+∠COB=180  

o

 

⇒135  

o

+∠COB=180  

o

 

⇒∠COB=180  

o

−135  

o

=45  

o

 

Now arc BC Subtends reflex ∠COB at the centre and ∠CDB at the remaining part of the circle.

⇒∠COB=2∠CDB

⇒∠CDB=  

2

1

∠COB

=  

2

1

×45  

o

=  

2

45  

o

 

=22  

2

1

 

o

 

(vi) Arc AB subtends ∠AOD at the centre and ∠ACD at the remaining part of the Circle

∠AOD=2∠ACB

⇒∠ACB=  

2

1

∠AOD=  

2

1

×70  

o

=35  

o

 

⇒∠CMO=90  

o

 

⇒∠AMC=90  

o

      (∠AMC+∠CMO=180  

o

)

Now in ΔACM

∠ACM+∠AMC+∠CAM=180  

o

 

⇒35  

o

+90  

o

+x  

o

=180  

o

 

⇒125  

o

+x  

o

=180  

o

 

⇒x  

o

=180−125  

o

=55  

o

Step-by-step explanation:

Similar questions