Math, asked by ketankumarking23, 1 day ago

If O is the point in the exterior of AABC, show that 2 (OA + OB + OC) > AB + BC + CA [Hint : Join OA, OB, OC)​

Answers

Answered by mathdude500
27

Given :-

O is the point in the exterior of triangle ABC.

To Prove :-

2 (OA + OB + OC) > AB + BC + CA

Construction :-

Join OA, OB, OC

Proof :-

In triangle AOB

We know, Sum of two sides of a triangle is greater than the third side.

So,

\rm\implies \:OA+OB > AB -  -  - (1) \\

Now, In triangle BOC

Again, Sum of two sides of a triangle is greater than third side.

So,

\rm\implies \:OB+OC>BC -  -  -  - (2) \\

Now, In triangle AOC

Again, Sum of two sides of a triangle is greater than third side.

So,

\rm\implies \:OC+OA>AC -  -  -  - (3) \\

On adding equation (1), (2) and (3), we get

\rm \: OA+OB + OB+OC + OC+OA>AB + BC + AC

\rm \: (OA + OA)+(OB + OB)+(OC + OC)>AB + BC + AC

\rm \: 2OA+2OB+2OC>AB + BC + AC

\rm\implies \:\rm \: 2(OA+OB+OC>AB + BC + AC \\

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

1. The sum of all interior angles of a triangle is supplementary.

2. The sum of all exterior angles of a triangle is 360°.

3. Exterior angle of a triangle is equals to sum of interior opposite angles.

4. Angle opposite to longest side is always greater.

5. Side opposite to greatest angle is always longest.

Attachments:
Answered by Anonymous
43

{\pmb{\frak{\underline{\red{Given:-}}}}}

  • If O is the point in the exterior of AABC, show that 2 (OA + OB + OC) > AB + BC + CA [Hint : Join OA, OB, OC)

{\pmb{\frak{\underline{\red{Find:-}}}}}

  • 2 (OA + OB + OC) > AB + BC + CA

{\pmb{\frak{\underline{\red{Solution:-}}}}}

 \rm \longmapsto{∆AOC,AO + OB = AB ------ ( 1 )}

\rm\longmapsto{∆BOC,BO + OC = BC ----( 2 )}

\rm\longmapsto{∆AOC,AO + OC = AC ----( 3 )}

Adding the 1,2 and 3 :-

\rm\longmapsto{AO+OB+OB+DC+AO+OC = >  AB + BC+AC}

\rm\longmapsto{2 AO + 2 OB +2O = >  AB + BC+AC}

\rm\longmapsto{2 ( AO +OB+OC) = >  AB + BC+AC}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\pmb{\frak {\dag\red{Proved}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

@Shivam

#BeBrainly

Attachments:
Similar questions