if Ø and Ø+36 are acute angles and sin(ø+36)= cos ø then the value of ø is
Answers
GIVEN :-
- θ and (θ + 36°) are acute angles.
- sin(θ + 36°) = cosθ.
TO FIND :-
- The value of θ .
SOLUTION :-
In the question it is given that "θ" is an acute angle , so we can say that , θ < 90°. [ Acute angles = less than 90° ]
Also , it is given that "θ + 36°" is an acute angle , so we can say that , (θ + 36°) < 90°.
⇒ sin(θ + 36°) = cosθ.
⇒ sin(θ + 36°) = sin(90° - θ)
⇒ θ + 36° = [{sin(90° - θ)}/{sin}]
On cancelling sin with sin we get,
⇒ θ + 36° = 90° - θ
⇒ θ + θ = 90° - 36°
⇒ 2θ = 54
⇒ θ = 54/2
⇒ θ = 27°
Hence , θ < 90° = 27° < 90°.
Also , (θ + 36°) < 90° = 27° + 36° < 90° = 63° < 90°
Hence the required value of θ is 27°.
Correct question :
If θ and θ + 36 are acute angles and sin ( θ + 36 ) = cos θ , then the value of θ is
Answer :
Given :
- θ and θ + 36° are acute angles
- sin ( θ + 36° ) = cos θ
To find :
- Value of θ
According to the question :
↦sin ( θ + 36° ) = cos θ = sin ( 90° - θ )
We know that,
⇛Acute angle = less than 90°
⇛[ sin ( 90° - θ ) = cos θ ]
On comparing, we get :
⟹ θ + 36° = 90° - θ
⟹ θ + θ = 90° - 36°
⟹ 2θ = 54°
⟹ θ = 54° / 2
⟹ ∴ θ = 27°