Math, asked by rohanullegaddi99, 5 months ago

 If one angle of a triangle is 56' and the difference of the other two angles is 20', then find the other two angles. 

Answers

Answered by parimeshram040
0

Step-by-step explanation:

Step-by-step explanation:

Let x ,y and z are three angles of a triangle .

/* According to the problem given,

Let x = 65° , y-z = 20 ---(1)

x + y + z = 180° /* Angle sum property */

=> 65° + y + z = 180°

=> y + z = 180° - 65°

=> y + z = 115° ---(2)

/* Add equations (1) and (2) , we get

2y = 135°

\implies y = \frac{135}{2}⟹y= 2135

\implies y = 67.5⟹y=67.5

/* Substitute y = 67.5 in equation (2) ,we get

67.5 + z = 11567.5+z=115

\implies z = 115 - 67.5 = 47.5⟹z=115−67.5=47.5

Therefore.,

\begin{gathered}Required \:two \: angles \: of \: triangle \:are\\67.5 \: and \: 47.5\end{gathered}

Requiredtwoanglesoftriangleare

67.5and47.5

Answered by InfiniteSoul
2

\sf{\bold{\purple{\star{\underline{\underline{Given}}}}}}

  • One angle of a triangle = 56°
  • Diff. btw other 2 angles = 20°

⠀⠀⠀⠀

\sf{\bold{\purple{\star{\underline{\underline{To\: find}}}}}}

⠀⠀⠀⠀

  • Other 2 unknown angles = ??

⠀⠀⠀⠀

\sf{\bold{\purple{\star{\underline{\underline{Solution}}}}}}

⠀⠀⠀⠀

  • Let the angle be x

⠀⠀⠀⠀

  • Other angle = x + 20

⠀⠀⠀⠀

\sf{\star{\boxed{\orange{\frak{ Sum\: of \: all \: all \: angles\: of \: triangle = \: 180}}}}}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ x + x + 20+ 56 = 180  }}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ x + x + 76 = 180 }}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ 2x + 76 = 180 }}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ 2x = 180 - 76 }}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ 2x = 104 }}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ x = \dfrac{104}{2}}}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ x = 52 }}

⠀⠀⠀⠀

\sf{\star{\boxed{\blue{\frak{ x = 52 }}}}}

⠀⠀⠀⠀

  • putting value of x in angles

⠀⠀⠀⠀

1st unknown angle = x = \sf{\dag{\boxed{\pink{\frak{  52 }}}}}

⠀⠀⠀⠀

2nd unknown angle = x + 20 = 52 + 20 = \sf{\dag{\boxed{\pink{\frak{ 72 }}}}}

Similar questions