Math, asked by shravanireddy3614, 11 months ago

if one angle of triangle is 48 ° and the other two angles are in the ratio 6 :5then the largest angle is​

Answers

Answered by amankumaraman11
0

 \underline{ \huge \frak{Given : : }}

  • One angle of triangle is 48°
  • Ratio of other angles of triangle = 6 : 5

 \underline{ \huge \frak{To \:  }{ \frak{find   : : }}}

  • Largest angle of the triangle.

 \underline{ \huge \frak{SoluTion : :}}

 \implies6x + 5x + 48 \degree= 180\degree \\   \implies \:  \:  \:  \:  \:  \:  \:  \: 11x + 48\degree = 180\degree \\ \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 11x = 180\degree - 48\degree \\ \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \: x =  \frac{180\degree - 48\degree}{11}  \\  \boxed{\implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \: x =  \frac{132\degree}{11}  =12\degree }

Hence,

 \sf  \: {1}^{st}  \:  \: angle = 48\degree \\  \sf {2}^{nd}  \: \:  angle = 72\degree \\ \sf  {3}^{rd}  \:  \: angle = 60\degree

Thus,

 \red{ \bf\bullet  \:  \: 72\degree  \:  \: is \:  \: the \:  \: largest \:  \: angle \:  \: of }\\  \red{ \bf \:  \:  \:  \:  the \:  \: triangle.}

 \\  \\  \\

#AnswerWithQuality

#BAL

Similar questions