if one is the zero of 3x3-x2-3x+1, the the other two zeroes are -1 and 1/3. justify
Answers
Answered by
8
Hi friend......here Is your answer.......hope this helped you.........
Attachments:
Answered by
3
Let α , β and Г be its zeroes.
Given , 1 is one of its zeroes.
Let, Г = 1
P(x) = 3x³ - x² - 3 x + 1
Here,
Coefficient of x³ = 3
Coefficient of x² = -1
Coefficient of x = -3
Constant term = 1.
We have,
⇒ Sum of zeroes = - ( coefficient of x² ) ÷ ( coefficient of x³ )
⇒ α + β + Г = - ( -1 ) ÷ 3
⇒ α + β + 1 = 1/3
⇒ α + β = ( 1/3 ) - 1
⇒ α + β = -2/3. ------ ( 1 )
Now,
⇒ Product of zeroes = - ( constant term ) ÷ coefficient of x³
⇒ αβГ = -1/3
⇒ αβ × 1 = -1/3
∴ αβ = -1/3.
Now,
⇒ ( α - β )² = ( α + β )² - 4αβ
By substituting the values of ( α + β ) and αβ.
⇒ ( α - β )² = ( -2/3 )² - 4 ( -1/3 )
⇒ ( α - β )² = ( 4/9 ) + ( 4/3 )
⇒ ( α - β )² = 16/9
⇒ ( α - β ) = √16/9
∴ ( α - β ) = 4/3. ------ ( 2 )
By adding ( 1 ) and ( 2 ),
⇒ α + β + α - β =( -2/3 ) + ( 4/3 )
⇒ 2α = 2/3
⇒ α =( 2/3 ) ÷ 2
∴ α = 1/3.
By substituting the value of α in ( 1 ),
⇒ α + β = -2/3
⇒ ( 1/3 ) + β = -2/3
⇒ β = ( -2/3 ) - ( 1/3 )
∴ β = -1.
Other 2 zeroes = 1/3 and ( -1 ).
Verification :
⇒ Sum of zeroes = - Coefficient of x² ÷ Coefficient of x³
⇒ 1 - 1 + 1/3 = - ( -1 ) / 3
∴ 1/3 = 1/3.
Now,
⇒ Sum of zeroes taken two at a time = Coefficient of x ÷ Coefficient of x³
⇒ { 1 ( -1 ) + (-1 ) ( 1/3 ) + 1 ( 1/3 ) } = -3 ÷ 3
⇒ { -1 - ( 1/3 ) + ( 1/3 ) } = -1
∴ -1 = -1
Verified.
Again,
⇒ Product of zeroes = - Constant term ÷ Coefficient of x³
⇒ 1 ( -1 ) ( 1/3 ) = -1/3
⇒ -1/3 = -1/3
Verified.
Given , 1 is one of its zeroes.
Let, Г = 1
P(x) = 3x³ - x² - 3 x + 1
Here,
Coefficient of x³ = 3
Coefficient of x² = -1
Coefficient of x = -3
Constant term = 1.
We have,
⇒ Sum of zeroes = - ( coefficient of x² ) ÷ ( coefficient of x³ )
⇒ α + β + Г = - ( -1 ) ÷ 3
⇒ α + β + 1 = 1/3
⇒ α + β = ( 1/3 ) - 1
⇒ α + β = -2/3. ------ ( 1 )
Now,
⇒ Product of zeroes = - ( constant term ) ÷ coefficient of x³
⇒ αβГ = -1/3
⇒ αβ × 1 = -1/3
∴ αβ = -1/3.
Now,
⇒ ( α - β )² = ( α + β )² - 4αβ
By substituting the values of ( α + β ) and αβ.
⇒ ( α - β )² = ( -2/3 )² - 4 ( -1/3 )
⇒ ( α - β )² = ( 4/9 ) + ( 4/3 )
⇒ ( α - β )² = 16/9
⇒ ( α - β ) = √16/9
∴ ( α - β ) = 4/3. ------ ( 2 )
By adding ( 1 ) and ( 2 ),
⇒ α + β + α - β =( -2/3 ) + ( 4/3 )
⇒ 2α = 2/3
⇒ α =( 2/3 ) ÷ 2
∴ α = 1/3.
By substituting the value of α in ( 1 ),
⇒ α + β = -2/3
⇒ ( 1/3 ) + β = -2/3
⇒ β = ( -2/3 ) - ( 1/3 )
∴ β = -1.
Other 2 zeroes = 1/3 and ( -1 ).
Verification :
⇒ Sum of zeroes = - Coefficient of x² ÷ Coefficient of x³
⇒ 1 - 1 + 1/3 = - ( -1 ) / 3
∴ 1/3 = 1/3.
Now,
⇒ Sum of zeroes taken two at a time = Coefficient of x ÷ Coefficient of x³
⇒ { 1 ( -1 ) + (-1 ) ( 1/3 ) + 1 ( 1/3 ) } = -3 ÷ 3
⇒ { -1 - ( 1/3 ) + ( 1/3 ) } = -1
∴ -1 = -1
Verified.
Again,
⇒ Product of zeroes = - Constant term ÷ Coefficient of x³
⇒ 1 ( -1 ) ( 1/3 ) = -1/3
⇒ -1/3 = -1/3
Verified.
Anonymous:
: )
Similar questions