Math, asked by nikitagupta9694, 1 month ago

if one of the angle of a triangle of a triangle is 45 digri and
other two angle are in the ratio 4:5 find the measure of all the angle​

Answers

Answered by bagkakali
25

Answer:

let the common ratio is x

so other two angles are 4x° and 5x°

sum of the three angles of a triangle is 180°

here,

45+4x+5x=180

=> 9x=180-45

=> 9x=135

=> x=135/9

=> x=15

so the angles are 45°, 4×15°=60° and 5×15°=75°

Answered by ShírIey
145

Given: The one angle of the triangle is 45° and other two angles of the triangle are in the ratio of 4 : 5.

☢ Let the another two angles of the triangle be 4n and 5n.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

\bigstar\;{\underline{\underline{\cal{\:\;ANGLE  \: SUM  \: PROPERTY \::}}}}\\\\

:\implies\sf\quad \angle A + \angle B + \angle C = 180^\circ \\\\\\

:\implies\sf\quad 4n + 5n + 45^\circ = 180^\circ\\\\\\

:\implies\sf\quad 9n + 45^\circ = 180^\circ\\\\\\

:\implies\sf\quad 9n = 180^\circ - 45^\circ\\\\\\

:\implies\sf\quad 9n = 135^\circ\\\\\\

:\implies\sf\quad n = \cancel\dfrac{135^\circ}{9}\\\\\\

:\implies\quad\underline{\boxed{\pmb{\sf{n = 15^\circ}}}}\\\\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

\underline{\bigstar\:\frak{~Angles\;of\;the\:\triangle\; :}}\\

\qquad\bullet\:\;\sf 4n = 4\times 15 = 60^\circ\\

\qquad\bullet\;\:\sf 5n = 5 \times 15 = 75^\circ\\\\

\therefore\:\underline{\sf{Hence, \:  the \:  other \:  two  \: angles \:  are \:  {\pmb{\sf{60^\circ}} and\:{\pmb{\sf{75^\circ}} respectively}}}}.


Anonymous: Excellent !
Similar questions